* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
65 lines
1.8 KiB
C++
65 lines
1.8 KiB
C++
/*!
|
|
* Copyright 2018-2019 by Contributors
|
|
*/
|
|
#include "../helpers.h"
|
|
#include "../../../src/common/host_device_vector.h"
|
|
#include <xgboost/tree_updater.h>
|
|
#include <gtest/gtest.h>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <memory>
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
TEST(Updater, Prune) {
|
|
int constexpr kNCols = 16;
|
|
|
|
std::vector<std::pair<std::string, std::string>> cfg;
|
|
cfg.emplace_back(std::pair<std::string, std::string>(
|
|
"num_feature", std::to_string(kNCols)));
|
|
cfg.emplace_back(std::pair<std::string, std::string>(
|
|
"min_split_loss", "10"));
|
|
cfg.emplace_back(std::pair<std::string, std::string>(
|
|
"silent", "1"));
|
|
|
|
// These data are just place holders.
|
|
HostDeviceVector<GradientPair> gpair =
|
|
{ {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f},
|
|
{0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f} };
|
|
auto dmat = CreateDMatrix(32, 16, 0.4, 3);
|
|
|
|
auto lparam = CreateEmptyGenericParam(0, 0);
|
|
|
|
// prepare tree
|
|
RegTree tree = RegTree();
|
|
tree.param.InitAllowUnknown(cfg);
|
|
std::vector<RegTree*> trees {&tree};
|
|
// prepare pruner
|
|
std::unique_ptr<TreeUpdater> pruner(TreeUpdater::Create("prune", &lparam));
|
|
pruner->Configure(cfg);
|
|
|
|
// loss_chg < min_split_loss;
|
|
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 0.0f, 0.0f);
|
|
pruner->Update(&gpair, dmat->get(), trees);
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 0);
|
|
|
|
// loss_chg > min_split_loss;
|
|
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 11.0f, 0.0f);
|
|
pruner->Update(&gpair, dmat->get(), trees);
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
|
|
// loss_chg == min_split_loss;
|
|
tree.Stat(0).loss_chg = 10;
|
|
pruner->Update(&gpair, dmat->get(), trees);
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
} // namespace tree
|
|
} // namespace xgboost
|