xgboost/src/tree/updater_gpu.cu
Rory Mitchell a96039141a
Dmatrix refactor stage 1 (#3301)
* Use sparse page as singular CSR matrix representation

* Simplify dmatrix methods

* Reduce statefullness of batch iterators

* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
2018-06-07 10:25:58 +12:00

764 lines
28 KiB
Plaintext

/*!
* Copyright 2017 XGBoost contributors
*/
#include <xgboost/tree_updater.h>
#include <utility>
#include <vector>
#include "param.h"
#include "updater_gpu_common.cuh"
namespace xgboost {
namespace tree {
DMLC_REGISTRY_FILE_TAG(updater_gpu);
/**
* @brief Absolute BFS order IDs to col-wise unique IDs based on user input
* @param tid the index of the element that this thread should access
* @param abs the array of absolute IDs
* @param colIds the array of column IDs for each element
* @param nodeStart the start of the node ID at this level
* @param nKeys number of nodes at this level.
* @return the uniq key
*/
static HOST_DEV_INLINE NodeIdT abs2uniqKey(int tid, const NodeIdT* abs,
const int* colIds,
NodeIdT nodeStart, int nKeys) {
int a = abs[tid];
if (a == kUnusedNode) return a;
return ((a - nodeStart) + (colIds[tid] * nKeys));
}
/**
* @struct Pair
* @brief Pair used for key basd scan operations on GradientPair
*/
struct Pair {
int key;
GradientPair value;
};
/** define a key that's not used at all in the entire boosting process */
static const int kNoneKey = -100;
/**
* @brief Allocate temporary buffers needed for scan operations
* @param tmpScans gradient buffer
* @param tmpKeys keys buffer
* @param size number of elements that will be scanned
*/
template <int BLKDIM_L1L3 = 256>
int ScanTempBufferSize(int size) {
int num_blocks = dh::DivRoundUp(size, BLKDIM_L1L3);
return num_blocks;
}
struct AddByKey {
template <typename T>
HOST_DEV_INLINE T operator()(const T& first, const T& second) const {
T result;
if (first.key == second.key) {
result.key = first.key;
result.value = first.value + second.value;
} else {
result.key = second.key;
result.value = second.value;
}
return result;
}
};
/**
* @brief Gradient value getter function
* @param id the index into the vals or instIds array to which to fetch
* @param vals the gradient value buffer
* @param instIds instance index buffer
* @return the expected gradient value
*/
HOST_DEV_INLINE GradientPair get(int id, const GradientPair* vals,
const int* instIds) {
id = instIds[id];
return vals[id];
}
template <int BLKDIM_L1L3>
__global__ void cubScanByKeyL1(GradientPair* scans, const GradientPair* vals,
const int* instIds, GradientPair* mScans,
int* mKeys, const NodeIdT* keys, int nUniqKeys,
const int* colIds, NodeIdT nodeStart,
const int size) {
Pair rootPair = {kNoneKey, GradientPair(0.f, 0.f)};
int myKey;
GradientPair myValue;
typedef cub::BlockScan<Pair, BLKDIM_L1L3> BlockScan;
__shared__ typename BlockScan::TempStorage temp_storage;
Pair threadData;
int tid = blockIdx.x * BLKDIM_L1L3 + threadIdx.x;
if (tid < size) {
myKey = abs2uniqKey(tid, keys, colIds, nodeStart, nUniqKeys);
myValue = get(tid, vals, instIds);
} else {
myKey = kNoneKey;
myValue = {};
}
threadData.key = myKey;
threadData.value = myValue;
// get previous key, especially needed for the last thread in this block
// in order to pass on the partial scan values.
// this statement MUST appear before the checks below!
// else, the result of this shuffle operation will be undefined
int previousKey = __shfl_up(myKey, 1);
// Collectively compute the block-wide exclusive prefix sum
BlockScan(temp_storage)
.ExclusiveScan(threadData, threadData, rootPair, AddByKey());
if (tid < size) {
scans[tid] = threadData.value;
} else {
return;
}
if (threadIdx.x == BLKDIM_L1L3 - 1) {
threadData.value =
(myKey == previousKey) ? threadData.value : GradientPair(0.0f, 0.0f);
mKeys[blockIdx.x] = myKey;
mScans[blockIdx.x] = threadData.value + myValue;
}
}
template <int BLKSIZE>
__global__ void cubScanByKeyL2(GradientPair* mScans, int* mKeys, int mLength) {
typedef cub::BlockScan<Pair, BLKSIZE, cub::BLOCK_SCAN_WARP_SCANS> BlockScan;
Pair threadData;
__shared__ typename BlockScan::TempStorage temp_storage;
for (int i = threadIdx.x; i < mLength; i += BLKSIZE - 1) {
threadData.key = mKeys[i];
threadData.value = mScans[i];
BlockScan(temp_storage).InclusiveScan(threadData, threadData, AddByKey());
mScans[i] = threadData.value;
__syncthreads();
}
}
template <int BLKDIM_L1L3>
__global__ void cubScanByKeyL3(GradientPair* sums, GradientPair* scans,
const GradientPair* vals, const int* instIds,
const GradientPair* mScans, const int* mKeys,
const NodeIdT* keys, int nUniqKeys,
const int* colIds, NodeIdT nodeStart,
const int size) {
int relId = threadIdx.x;
int tid = (blockIdx.x * BLKDIM_L1L3) + relId;
// to avoid the following warning from nvcc:
// __shared__ memory variable with non-empty constructor or destructor
// (potential race between threads)
__shared__ char gradBuff[sizeof(GradientPair)];
__shared__ int s_mKeys;
GradientPair* s_mScans = reinterpret_cast<GradientPair*>(gradBuff);
if (tid >= size) return;
// cache block-wide partial scan info
if (relId == 0) {
s_mKeys = (blockIdx.x > 0) ? mKeys[blockIdx.x - 1] : kNoneKey;
s_mScans[0] = (blockIdx.x > 0) ? mScans[blockIdx.x - 1] : GradientPair();
}
int myKey = abs2uniqKey(tid, keys, colIds, nodeStart, nUniqKeys);
int previousKey =
tid == 0 ? kNoneKey
: abs2uniqKey(tid - 1, keys, colIds, nodeStart, nUniqKeys);
GradientPair myValue = scans[tid];
__syncthreads();
if (blockIdx.x > 0 && s_mKeys == previousKey) {
myValue += s_mScans[0];
}
if (tid == size - 1) {
sums[previousKey] = myValue + get(tid, vals, instIds);
}
if ((previousKey != myKey) && (previousKey >= 0)) {
sums[previousKey] = myValue;
myValue = GradientPair(0.0f, 0.0f);
}
scans[tid] = myValue;
}
/**
* @brief Performs fused reduce and scan by key functionality. It is assumed
* that
* the keys occur contiguously!
* @param sums the output gradient reductions for each element performed
* key-wise
* @param scans the output gradient scans for each element performed key-wise
* @param vals the gradients evaluated for each observation.
* @param instIds instance ids for each element
* @param keys keys to be used to segment the reductions. They need not occur
* contiguously in contrast to scan_by_key. Currently, we need one key per
* value in the 'vals' array.
* @param size number of elements in the 'vals' array
* @param nUniqKeys max number of uniq keys found per column
* @param nCols number of columns
* @param tmpScans temporary scan buffer needed for cub-pyramid algo
* @param tmpKeys temporary key buffer needed for cub-pyramid algo
* @param colIds column indices for each element in the array
* @param nodeStart index of the leftmost node in the current level
*/
template <int BLKDIM_L1L3 = 256, int BLKDIM_L2 = 512>
void reduceScanByKey(GradientPair* sums, GradientPair* scans, const GradientPair* vals,
const int* instIds, const NodeIdT* keys, int size,
int nUniqKeys, int nCols, GradientPair* tmpScans,
int* tmpKeys, const int* colIds, NodeIdT nodeStart) {
int nBlks = dh::DivRoundUp(size, BLKDIM_L1L3);
cudaMemset(sums, 0, nUniqKeys * nCols * sizeof(GradientPair));
cubScanByKeyL1<BLKDIM_L1L3>
<<<nBlks, BLKDIM_L1L3>>>(scans, vals, instIds, tmpScans, tmpKeys, keys,
nUniqKeys, colIds, nodeStart, size);
cubScanByKeyL2<BLKDIM_L2><<<1, BLKDIM_L2>>>(tmpScans, tmpKeys, nBlks);
cubScanByKeyL3<BLKDIM_L1L3>
<<<nBlks, BLKDIM_L1L3>>>(sums, scans, vals, instIds, tmpScans, tmpKeys,
keys, nUniqKeys, colIds, nodeStart, size);
}
/**
* @struct ExactSplitCandidate
* @brief Abstraction of a possible split in the decision tree
*/
struct ExactSplitCandidate {
/** the optimal gain score for this node */
float score;
/** index where to split in the DMatrix */
int index;
HOST_DEV_INLINE ExactSplitCandidate() : score(-FLT_MAX), index(INT_MAX) {}
/**
* @brief Whether the split info is valid to be used to create a new child
* @param minSplitLoss minimum score above which decision to split is made
* @return true if splittable, else false
*/
HOST_DEV_INLINE bool isSplittable(float minSplitLoss) const {
return ((score >= minSplitLoss) && (index != INT_MAX));
}
};
/**
* @enum ArgMaxByKeyAlgo best_split_evaluation.cuh
* @brief Help decide which algorithm to use for multi-argmax operation
*/
enum ArgMaxByKeyAlgo {
/** simplest, use gmem-atomics for all updates */
kAbkGmem = 0,
/** use smem-atomics for updates (when number of keys are less) */
kAbkSmem
};
/** max depth until which to use shared mem based atomics for argmax */
static const int kMaxAbkLevels = 3;
HOST_DEV_INLINE ExactSplitCandidate maxSplit(ExactSplitCandidate a,
ExactSplitCandidate b) {
ExactSplitCandidate out;
if (a.score < b.score) {
out.score = b.score;
out.index = b.index;
} else if (a.score == b.score) {
out.score = a.score;
out.index = (a.index < b.index) ? a.index : b.index;
} else {
out.score = a.score;
out.index = a.index;
}
return out;
}
DEV_INLINE void atomicArgMax(ExactSplitCandidate* address,
ExactSplitCandidate val) {
unsigned long long* intAddress = (unsigned long long*)address; // NOLINT
unsigned long long old = *intAddress; // NOLINT
unsigned long long assumed; // NOLINT
do {
assumed = old;
ExactSplitCandidate res =
maxSplit(val, *reinterpret_cast<ExactSplitCandidate*>(&assumed));
old = atomicCAS(intAddress, assumed, *reinterpret_cast<uint64_t*>(&res));
} while (assumed != old);
}
DEV_INLINE void argMaxWithAtomics(
int id, ExactSplitCandidate* nodeSplits, const GradientPair* gradScans,
const GradientPair* gradSums, const float* vals, const int* colIds,
const NodeIdT* nodeAssigns, const DeviceNodeStats* nodes, int nUniqKeys,
NodeIdT nodeStart, int len, const GPUTrainingParam& param) {
int nodeId = nodeAssigns[id];
// @todo: this is really a bad check! but will be fixed when we move
// to key-based reduction
if ((id == 0) ||
!((nodeId == nodeAssigns[id - 1]) && (colIds[id] == colIds[id - 1]) &&
(vals[id] == vals[id - 1]))) {
if (nodeId != kUnusedNode) {
int sumId = abs2uniqKey(id, nodeAssigns, colIds, nodeStart, nUniqKeys);
GradientPair colSum = gradSums[sumId];
int uid = nodeId - nodeStart;
DeviceNodeStats n = nodes[nodeId];
GradientPair parentSum = n.sum_gradients;
float parentGain = n.root_gain;
bool tmp;
ExactSplitCandidate s;
GradientPair missing = parentSum - colSum;
s.score = LossChangeMissing(gradScans[id], missing, parentSum, parentGain,
param, tmp);
s.index = id;
atomicArgMax(nodeSplits + uid, s);
} // end if nodeId != UNUSED_NODE
} // end if id == 0 ...
}
__global__ void atomicArgMaxByKeyGmem(
ExactSplitCandidate* nodeSplits, const GradientPair* gradScans,
const GradientPair* gradSums, const float* vals, const int* colIds,
const NodeIdT* nodeAssigns, const DeviceNodeStats* nodes, int nUniqKeys,
NodeIdT nodeStart, int len, const TrainParam param) {
int id = threadIdx.x + (blockIdx.x * blockDim.x);
const int stride = blockDim.x * gridDim.x;
for (; id < len; id += stride) {
argMaxWithAtomics(id, nodeSplits, gradScans, gradSums, vals, colIds,
nodeAssigns, nodes, nUniqKeys, nodeStart, len,
GPUTrainingParam(param));
}
}
__global__ void atomicArgMaxByKeySmem(
ExactSplitCandidate* nodeSplits, const GradientPair* gradScans,
const GradientPair* gradSums, const float* vals, const int* colIds,
const NodeIdT* nodeAssigns, const DeviceNodeStats* nodes, int nUniqKeys,
NodeIdT nodeStart, int len, const GPUTrainingParam param) {
extern __shared__ char sArr[];
ExactSplitCandidate* sNodeSplits =
reinterpret_cast<ExactSplitCandidate*>(sArr);
int tid = threadIdx.x;
ExactSplitCandidate defVal;
#pragma unroll 1
for (int i = tid; i < nUniqKeys; i += blockDim.x) {
sNodeSplits[i] = defVal;
}
__syncthreads();
int id = tid + (blockIdx.x * blockDim.x);
const int stride = blockDim.x * gridDim.x;
for (; id < len; id += stride) {
argMaxWithAtomics(id, sNodeSplits, gradScans, gradSums, vals, colIds,
nodeAssigns, nodes, nUniqKeys, nodeStart, len, param);
}
__syncthreads();
for (int i = tid; i < nUniqKeys; i += blockDim.x) {
ExactSplitCandidate s = sNodeSplits[i];
atomicArgMax(nodeSplits + i, s);
}
}
/**
* @brief Performs argmax_by_key functionality but for cases when keys need not
* occur contiguously
* @param nodeSplits will contain information on best split for each node
* @param gradScans exclusive sum on sorted segments for each col
* @param gradSums gradient sum for each column in DMatrix based on to node-ids
* @param vals feature values
* @param colIds column index for each element in the feature values array
* @param nodeAssigns node-id assignments to each element in DMatrix
* @param nodes pointer to all nodes for this tree in BFS order
* @param nUniqKeys number of unique node-ids in this level
* @param nodeStart start index of the node-ids in this level
* @param len number of elements
* @param param training parameters
* @param algo which algorithm to use for argmax_by_key
*/
template <int BLKDIM = 256, int ITEMS_PER_THREAD = 4>
void argMaxByKey(ExactSplitCandidate* nodeSplits, const GradientPair* gradScans,
const GradientPair* gradSums, const float* vals,
const int* colIds, const NodeIdT* nodeAssigns,
const DeviceNodeStats* nodes, int nUniqKeys,
NodeIdT nodeStart, int len, const TrainParam param,
ArgMaxByKeyAlgo algo) {
dh::FillConst<ExactSplitCandidate, BLKDIM, ITEMS_PER_THREAD>(
dh::GetDeviceIdx(param.gpu_id), nodeSplits, nUniqKeys,
ExactSplitCandidate());
int nBlks = dh::DivRoundUp(len, ITEMS_PER_THREAD * BLKDIM);
switch (algo) {
case kAbkGmem:
atomicArgMaxByKeyGmem<<<nBlks, BLKDIM>>>(
nodeSplits, gradScans, gradSums, vals, colIds, nodeAssigns, nodes,
nUniqKeys, nodeStart, len, param);
break;
case kAbkSmem:
atomicArgMaxByKeySmem<<<nBlks, BLKDIM,
sizeof(ExactSplitCandidate) * nUniqKeys>>>(
nodeSplits, gradScans, gradSums, vals, colIds, nodeAssigns, nodes,
nUniqKeys, nodeStart, len, GPUTrainingParam(param));
break;
default:
throw std::runtime_error("argMaxByKey: Bad algo passed!");
}
}
__global__ void assignColIds(int* colIds, const int* colOffsets) {
int myId = blockIdx.x;
int start = colOffsets[myId];
int end = colOffsets[myId + 1];
for (int id = start + threadIdx.x; id < end; id += blockDim.x) {
colIds[id] = myId;
}
}
__global__ void fillDefaultNodeIds(NodeIdT* nodeIdsPerInst,
const DeviceNodeStats* nodes, int nRows) {
int id = threadIdx.x + (blockIdx.x * blockDim.x);
if (id >= nRows) {
return;
}
// if this element belongs to none of the currently active node-id's
NodeIdT nId = nodeIdsPerInst[id];
if (nId == kUnusedNode) {
return;
}
const DeviceNodeStats n = nodes[nId];
NodeIdT result;
if (n.IsLeaf() || n.IsUnused()) {
result = kUnusedNode;
} else if (n.dir == kLeftDir) {
result = (2 * n.idx) + 1;
} else {
result = (2 * n.idx) + 2;
}
nodeIdsPerInst[id] = result;
}
__global__ void assignNodeIds(NodeIdT* nodeIdsPerInst, int* nodeLocations,
const NodeIdT* nodeIds, const int* instId,
const DeviceNodeStats* nodes,
const int* colOffsets, const float* vals,
int nVals, int nCols) {
int id = threadIdx.x + (blockIdx.x * blockDim.x);
const int stride = blockDim.x * gridDim.x;
for (; id < nVals; id += stride) {
// fusing generation of indices for node locations
nodeLocations[id] = id;
// using nodeIds here since the previous kernel would have updated
// the nodeIdsPerInst with all default assignments
int nId = nodeIds[id];
// if this element belongs to none of the currently active node-id's
if (nId != kUnusedNode) {
const DeviceNodeStats n = nodes[nId];
int colId = n.fidx;
// printf("nid=%d colId=%d id=%d\n", nId, colId, id);
int start = colOffsets[colId];
int end = colOffsets[colId + 1];
// @todo: too much wasteful threads!!
if ((id >= start) && (id < end) && !(n.IsLeaf() || n.IsUnused())) {
NodeIdT result = (2 * n.idx) + 1 + (vals[id] >= n.fvalue);
nodeIdsPerInst[instId[id]] = result;
}
}
}
}
__global__ void markLeavesKernel(DeviceNodeStats* nodes, int len) {
int id = (blockIdx.x * blockDim.x) + threadIdx.x;
if ((id < len) && !nodes[id].IsUnused()) {
int lid = (id << 1) + 1;
int rid = (id << 1) + 2;
if ((lid >= len) || (rid >= len)) {
nodes[id].root_gain = -FLT_MAX; // bottom-most nodes
} else if (nodes[lid].IsUnused() && nodes[rid].IsUnused()) {
nodes[id].root_gain = -FLT_MAX; // unused child nodes
}
}
}
class GPUMaker : public TreeUpdater {
protected:
TrainParam param;
/** whether we have initialized memory already (so as not to repeat!) */
bool allocated;
/** feature values stored in column-major compressed format */
dh::DVec2<float> vals;
dh::DVec<float> vals_cached;
/** corresponding instance id's of these featutre values */
dh::DVec2<int> instIds;
dh::DVec<int> instIds_cached;
/** column offsets for these feature values */
dh::DVec<int> colOffsets;
dh::DVec<GradientPair> gradsInst;
dh::DVec2<NodeIdT> nodeAssigns;
dh::DVec2<int> nodeLocations;
dh::DVec<DeviceNodeStats> nodes;
dh::DVec<NodeIdT> nodeAssignsPerInst;
dh::DVec<GradientPair> gradSums;
dh::DVec<GradientPair> gradScans;
dh::DVec<ExactSplitCandidate> nodeSplits;
int nVals;
int nRows;
int nCols;
int maxNodes;
int maxLeaves;
// devices are only used for resharding the HostDeviceVector passed as a parameter;
// the algorithm works with a single GPU only
GPUSet devices;
dh::CubMemory tmp_mem;
dh::DVec<GradientPair> tmpScanGradBuff;
dh::DVec<int> tmpScanKeyBuff;
dh::DVec<int> colIds;
dh::BulkAllocator<dh::MemoryType::kDevice> ba;
public:
GPUMaker() : allocated(false) {}
~GPUMaker() {}
void Init(
const std::vector<std::pair<std::string, std::string>>& args) override {
param.InitAllowUnknown(args);
maxNodes = (1 << (param.max_depth + 1)) - 1;
maxLeaves = 1 << param.max_depth;
devices = GPUSet::Range(param.gpu_id, dh::NDevicesAll(param.n_gpus));
}
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
const std::vector<RegTree*>& trees) override {
GradStats::CheckInfo(dmat->Info());
// rescale learning rate according to size of trees
float lr = param.learning_rate;
param.learning_rate = lr / trees.size();
gpair->Reshard(devices);
try {
// build tree
for (size_t i = 0; i < trees.size(); ++i) {
UpdateTree(gpair, dmat, trees[i]);
}
} catch (const std::exception& e) {
LOG(FATAL) << "GPU plugin exception: " << e.what() << std::endl;
}
param.learning_rate = lr;
}
/// @note: Update should be only after Init!!
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
RegTree* hTree) {
if (!allocated) {
setupOneTimeData(dmat);
}
for (int i = 0; i < param.max_depth; ++i) {
if (i == 0) {
// make sure to start on a fresh tree with sorted values!
vals.CurrentDVec() = vals_cached;
instIds.CurrentDVec() = instIds_cached;
transferGrads(gpair);
}
int nNodes = 1 << i;
NodeIdT nodeStart = nNodes - 1;
initNodeData(i, nodeStart, nNodes);
findSplit(i, nodeStart, nNodes);
}
// mark all the used nodes with unused children as leaf nodes
markLeaves();
Dense2SparseTree(hTree, nodes, param);
}
void split2node(int nNodes, NodeIdT nodeStart) {
auto d_nodes = nodes.Data();
auto d_gradScans = gradScans.Data();
auto d_gradSums = gradSums.Data();
auto d_nodeAssigns = nodeAssigns.Current();
auto d_colIds = colIds.Data();
auto d_vals = vals.Current();
auto d_nodeSplits = nodeSplits.Data();
int nUniqKeys = nNodes;
float min_split_loss = param.min_split_loss;
auto gpu_param = GPUTrainingParam(param);
dh::LaunchN(param.gpu_id, nNodes, [=] __device__(int uid) {
int absNodeId = uid + nodeStart;
ExactSplitCandidate s = d_nodeSplits[uid];
if (s.isSplittable(min_split_loss)) {
int idx = s.index;
int nodeInstId =
abs2uniqKey(idx, d_nodeAssigns, d_colIds, nodeStart, nUniqKeys);
bool missingLeft = true;
const DeviceNodeStats& n = d_nodes[absNodeId];
GradientPair gradScan = d_gradScans[idx];
GradientPair gradSum = d_gradSums[nodeInstId];
float thresh = d_vals[idx];
int colId = d_colIds[idx];
// get the default direction for the current node
GradientPair missing = n.sum_gradients - gradSum;
LossChangeMissing(gradScan, missing, n.sum_gradients, n.root_gain,
gpu_param, missingLeft);
// get the score/weight/id/gradSum for left and right child nodes
GradientPair lGradSum = missingLeft ? gradScan + missing : gradScan;
GradientPair rGradSum = n.sum_gradients - lGradSum;
// Create children
d_nodes[LeftChildNodeIdx(absNodeId)] =
DeviceNodeStats(lGradSum, LeftChildNodeIdx(absNodeId), gpu_param);
d_nodes[RightChildNodeIdx(absNodeId)] =
DeviceNodeStats(rGradSum, RightChildNodeIdx(absNodeId), gpu_param);
// Set split for parent
d_nodes[absNodeId].SetSplit(thresh, colId,
missingLeft ? kLeftDir : kRightDir, lGradSum,
rGradSum);
} else {
// cannot be split further, so this node is a leaf!
d_nodes[absNodeId].root_gain = -FLT_MAX;
}
});
}
void findSplit(int level, NodeIdT nodeStart, int nNodes) {
reduceScanByKey(gradSums.Data(), gradScans.Data(), gradsInst.Data(),
instIds.Current(), nodeAssigns.Current(), nVals, nNodes,
nCols, tmpScanGradBuff.Data(), tmpScanKeyBuff.Data(),
colIds.Data(), nodeStart);
argMaxByKey(nodeSplits.Data(), gradScans.Data(), gradSums.Data(),
vals.Current(), colIds.Data(), nodeAssigns.Current(),
nodes.Data(), nNodes, nodeStart, nVals, param,
level <= kMaxAbkLevels ? kAbkSmem : kAbkGmem);
split2node(nNodes, nodeStart);
}
void allocateAllData(int offsetSize) {
int tmpBuffSize = ScanTempBufferSize(nVals);
ba.Allocate(dh::GetDeviceIdx(param.gpu_id), param.silent, &vals, nVals,
&vals_cached, nVals, &instIds, nVals, &instIds_cached, nVals,
&colOffsets, offsetSize, &gradsInst, nRows, &nodeAssigns, nVals,
&nodeLocations, nVals, &nodes, maxNodes, &nodeAssignsPerInst,
nRows, &gradSums, maxLeaves * nCols, &gradScans, nVals,
&nodeSplits, maxLeaves, &tmpScanGradBuff, tmpBuffSize,
&tmpScanKeyBuff, tmpBuffSize, &colIds, nVals);
}
void setupOneTimeData(DMatrix* dmat) {
size_t free_memory = dh::AvailableMemory(dh::GetDeviceIdx(param.gpu_id));
if (!dmat->SingleColBlock()) {
throw std::runtime_error("exact::GPUBuilder - must have 1 column block");
}
std::vector<float> fval;
std::vector<int> fId;
std::vector<size_t> offset;
convertToCsc(dmat, &fval, &fId, &offset);
allocateAllData(static_cast<int>(offset.size()));
transferAndSortData(fval, fId, offset);
allocated = true;
}
void convertToCsc(DMatrix* dmat, std::vector<float>* fval,
std::vector<int>* fId, std::vector<size_t>* offset) {
MetaInfo info = dmat->Info();
CHECK(info.num_col_ < std::numeric_limits<int>::max());
CHECK(info.num_row_ < std::numeric_limits<int>::max());
nRows = static_cast<int>(info.num_row_);
nCols = static_cast<int>(info.num_col_);
offset->reserve(nCols + 1);
offset->push_back(0);
fval->reserve(nCols * nRows);
fId->reserve(nCols * nRows);
// in case you end up with a DMatrix having no column access
// then make sure to enable that before copying the data!
if (!dmat->HaveColAccess(true)) {
dmat->InitColAccess(nRows, true);
}
auto iter = dmat->ColIterator();
iter->BeforeFirst();
while (iter->Next()) {
auto batch = iter->Value();
for (int i = 0; i < batch.Size(); i++) {
auto col = batch[i];
for (const Entry* it = col.data; it != col.data + col.length;
it++) {
int inst_id = static_cast<int>(it->index);
fval->push_back(it->fvalue);
fId->push_back(inst_id);
}
offset->push_back(fval->size());
}
}
CHECK(fval->size() < std::numeric_limits<int>::max());
nVals = static_cast<int>(fval->size());
}
void transferAndSortData(const std::vector<float>& fval,
const std::vector<int>& fId,
const std::vector<size_t>& offset) {
vals.CurrentDVec() = fval;
instIds.CurrentDVec() = fId;
colOffsets = offset;
dh::SegmentedSort<float, int>(&tmp_mem, &vals, &instIds, nVals, nCols,
colOffsets);
vals_cached = vals.CurrentDVec();
instIds_cached = instIds.CurrentDVec();
assignColIds<<<nCols, 512>>>(colIds.Data(), colOffsets.Data());
}
void transferGrads(HostDeviceVector<GradientPair>* gpair) {
gpair->GatherTo(gradsInst.tbegin(), gradsInst.tend());
// evaluate the full-grad reduction for the root node
dh::SumReduction<GradientPair>(tmp_mem, gradsInst, gradSums, nRows);
}
void initNodeData(int level, NodeIdT nodeStart, int nNodes) {
// all instances belong to root node at the beginning!
if (level == 0) {
nodes.Fill(DeviceNodeStats());
nodeAssigns.CurrentDVec().Fill(0);
nodeAssignsPerInst.Fill(0);
// for root node, just update the gradient/score/weight/id info
// before splitting it! Currently all data is on GPU, hence this
// stupid little kernel
auto d_nodes = nodes.Data();
auto d_sums = gradSums.Data();
auto gpu_params = GPUTrainingParam(param);
dh::LaunchN(param.gpu_id, 1, [=] __device__(int idx) {
d_nodes[0] = DeviceNodeStats(d_sums[0], 0, gpu_params);
});
} else {
const int BlkDim = 256;
const int ItemsPerThread = 4;
// assign default node ids first
int nBlks = dh::DivRoundUp(nRows, BlkDim);
fillDefaultNodeIds<<<nBlks, BlkDim>>>(nodeAssignsPerInst.Data(),
nodes.Data(), nRows);
// evaluate the correct child indices of non-missing values next
nBlks = dh::DivRoundUp(nVals, BlkDim * ItemsPerThread);
assignNodeIds<<<nBlks, BlkDim>>>(
nodeAssignsPerInst.Data(), nodeLocations.Current(),
nodeAssigns.Current(), instIds.Current(), nodes.Data(),
colOffsets.Data(), vals.Current(), nVals, nCols);
// gather the node assignments across all other columns too
dh::Gather(dh::GetDeviceIdx(param.gpu_id), nodeAssigns.Current(),
nodeAssignsPerInst.Data(), instIds.Current(), nVals);
sortKeys(level);
}
}
void sortKeys(int level) {
// segmented-sort the arrays based on node-id's
// but we don't need more than level+1 bits for sorting!
SegmentedSort(&tmp_mem, &nodeAssigns, &nodeLocations, nVals, nCols,
colOffsets, 0, level + 1);
dh::Gather<float, int>(dh::GetDeviceIdx(param.gpu_id), vals.other(),
vals.Current(), instIds.other(), instIds.Current(),
nodeLocations.Current(), nVals);
vals.buff().selector ^= 1;
instIds.buff().selector ^= 1;
}
void markLeaves() {
const int BlkDim = 128;
int nBlks = dh::DivRoundUp(maxNodes, BlkDim);
markLeavesKernel<<<nBlks, BlkDim>>>(nodes.Data(), maxNodes);
}
};
XGBOOST_REGISTER_TREE_UPDATER(GPUMaker, "grow_gpu")
.describe("Grow tree with GPU.")
.set_body([]() { return new GPUMaker(); });
} // namespace tree
} // namespace xgboost