xgboost/src/common/hist_util.cc
Rory Mitchell a96039141a
Dmatrix refactor stage 1 (#3301)
* Use sparse page as singular CSR matrix representation

* Simplify dmatrix methods

* Reduce statefullness of batch iterators

* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
2018-06-07 10:25:58 +12:00

543 lines
18 KiB
C++

/*!
* Copyright 2017 by Contributors
* \file hist_util.h
* \brief Utilities to store histograms
* \author Philip Cho, Tianqi Chen
*/
#include <dmlc/omp.h>
#include <numeric>
#include <vector>
#include "./sync.h"
#include "./random.h"
#include "./column_matrix.h"
#include "./hist_util.h"
#include "./quantile.h"
namespace xgboost {
namespace common {
void HistCutMatrix::Init(DMatrix* p_fmat, uint32_t max_num_bins) {
using WXQSketch = common::WXQuantileSketch<bst_float, bst_float>;
const MetaInfo& info = p_fmat->Info();
// safe factor for better accuracy
constexpr int kFactor = 8;
std::vector<WXQSketch> sketchs;
const int nthread = omp_get_max_threads();
auto nstep = static_cast<unsigned>((info.num_col_ + nthread - 1) / nthread);
auto ncol = static_cast<unsigned>(info.num_col_);
sketchs.resize(info.num_col_);
for (auto& s : sketchs) {
s.Init(info.num_row_, 1.0 / (max_num_bins * kFactor));
}
auto iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
auto batch = iter->Value();
#pragma omp parallel num_threads(nthread)
{
CHECK_EQ(nthread, omp_get_num_threads());
auto tid = static_cast<unsigned>(omp_get_thread_num());
unsigned begin = std::min(nstep * tid, ncol);
unsigned end = std::min(nstep * (tid + 1), ncol);
for (size_t i = 0; i < batch.Size(); ++i) { // NOLINT(*)
size_t ridx = batch.base_rowid + i;
SparsePage::Inst inst = batch[i];
for (bst_uint j = 0; j < inst.length; ++j) {
if (inst[j].index >= begin && inst[j].index < end) {
sketchs[inst[j].index].Push(inst[j].fvalue, info.GetWeight(ridx));
}
}
}
}
}
// gather the histogram data
rabit::SerializeReducer<WXQSketch::SummaryContainer> sreducer;
std::vector<WXQSketch::SummaryContainer> summary_array;
summary_array.resize(sketchs.size());
for (size_t i = 0; i < sketchs.size(); ++i) {
WXQSketch::SummaryContainer out;
sketchs[i].GetSummary(&out);
summary_array[i].Reserve(max_num_bins * kFactor);
summary_array[i].SetPrune(out, max_num_bins * kFactor);
}
size_t nbytes = WXQSketch::SummaryContainer::CalcMemCost(max_num_bins * kFactor);
sreducer.Allreduce(dmlc::BeginPtr(summary_array), nbytes, summary_array.size());
this->min_val.resize(info.num_col_);
row_ptr.push_back(0);
for (size_t fid = 0; fid < summary_array.size(); ++fid) {
WXQSketch::SummaryContainer a;
a.Reserve(max_num_bins);
a.SetPrune(summary_array[fid], max_num_bins);
const bst_float mval = a.data[0].value;
this->min_val[fid] = mval - (fabs(mval) + 1e-5);
if (a.size > 1 && a.size <= 16) {
/* specialized code categorial / ordinal data -- use midpoints */
for (size_t i = 1; i < a.size; ++i) {
bst_float cpt = (a.data[i].value + a.data[i - 1].value) / 2.0f;
if (i == 1 || cpt > cut.back()) {
cut.push_back(cpt);
}
}
} else {
for (size_t i = 2; i < a.size; ++i) {
bst_float cpt = a.data[i - 1].value;
if (i == 2 || cpt > cut.back()) {
cut.push_back(cpt);
}
}
}
// push a value that is greater than anything
if (a.size != 0) {
bst_float cpt = a.data[a.size - 1].value;
// this must be bigger than last value in a scale
bst_float last = cpt + (fabs(cpt) + 1e-5);
cut.push_back(last);
}
row_ptr.push_back(static_cast<bst_uint>(cut.size()));
}
}
void GHistIndexMatrix::Init(DMatrix* p_fmat) {
CHECK(cut != nullptr); // NOLINT
auto iter = p_fmat->RowIterator();
const int nthread = omp_get_max_threads();
const uint32_t nbins = cut->row_ptr.back();
hit_count.resize(nbins, 0);
hit_count_tloc_.resize(nthread * nbins, 0);
iter->BeforeFirst();
row_ptr.push_back(0);
while (iter->Next()) {
auto batch = iter->Value();
const size_t rbegin = row_ptr.size() - 1;
for (size_t i = 0; i < batch.Size(); ++i) {
row_ptr.push_back(batch[i].length + row_ptr.back());
}
index.resize(row_ptr.back());
CHECK_GT(cut->cut.size(), 0U);
CHECK_EQ(cut->row_ptr.back(), cut->cut.size());
auto bsize = static_cast<omp_ulong>(batch.Size());
#pragma omp parallel for num_threads(nthread) schedule(static)
for (omp_ulong i = 0; i < bsize; ++i) { // NOLINT(*)
const int tid = omp_get_thread_num();
size_t ibegin = row_ptr[rbegin + i];
size_t iend = row_ptr[rbegin + i + 1];
SparsePage::Inst inst = batch[i];
CHECK_EQ(ibegin + inst.length, iend);
for (bst_uint j = 0; j < inst.length; ++j) {
unsigned fid = inst[j].index;
auto cbegin = cut->cut.begin() + cut->row_ptr[fid];
auto cend = cut->cut.begin() + cut->row_ptr[fid + 1];
CHECK(cbegin != cend);
auto it = std::upper_bound(cbegin, cend, inst[j].fvalue);
if (it == cend) it = cend - 1;
uint32_t idx = static_cast<uint32_t>(it - cut->cut.begin());
index[ibegin + j] = idx;
++hit_count_tloc_[tid * nbins + idx];
}
std::sort(index.begin() + ibegin, index.begin() + iend);
}
#pragma omp parallel for num_threads(nthread) schedule(static)
for (bst_omp_uint idx = 0; idx < bst_omp_uint(nbins); ++idx) {
for (int tid = 0; tid < nthread; ++tid) {
hit_count[idx] += hit_count_tloc_[tid * nbins + idx];
}
}
}
}
template <typename T>
static size_t GetConflictCount(const std::vector<bool>& mark,
const Column<T>& column,
size_t max_cnt) {
size_t ret = 0;
if (column.type == xgboost::common::kDenseColumn) {
for (size_t i = 0; i < column.len; ++i) {
if (column.index[i] != std::numeric_limits<T>::max() && mark[i]) {
++ret;
if (ret > max_cnt) {
return max_cnt + 1;
}
}
}
} else {
for (size_t i = 0; i < column.len; ++i) {
if (mark[column.row_ind[i]]) {
++ret;
if (ret > max_cnt) {
return max_cnt + 1;
}
}
}
}
return ret;
}
template <typename T>
inline void
MarkUsed(std::vector<bool>* p_mark, const Column<T>& column) {
std::vector<bool>& mark = *p_mark;
if (column.type == xgboost::common::kDenseColumn) {
for (size_t i = 0; i < column.len; ++i) {
if (column.index[i] != std::numeric_limits<T>::max()) {
mark[i] = true;
}
}
} else {
for (size_t i = 0; i < column.len; ++i) {
mark[column.row_ind[i]] = true;
}
}
}
template <typename T>
inline std::vector<std::vector<unsigned>>
FindGroups_(const std::vector<unsigned>& feature_list,
const std::vector<size_t>& feature_nnz,
const ColumnMatrix& colmat,
size_t nrow,
const FastHistParam& param) {
/* Goal: Bundle features together that has little or no "overlap", i.e.
only a few data points should have nonzero values for
member features.
Note that one-hot encoded features will be grouped together. */
std::vector<std::vector<unsigned>> groups;
std::vector<std::vector<bool>> conflict_marks;
std::vector<size_t> group_nnz;
std::vector<size_t> group_conflict_cnt;
const auto max_conflict_cnt
= static_cast<size_t>(param.max_conflict_rate * nrow);
for (auto fid : feature_list) {
const Column<T>& column = colmat.GetColumn<T>(fid);
const size_t cur_fid_nnz = feature_nnz[fid];
bool need_new_group = true;
// randomly choose some of existing groups as candidates
std::vector<size_t> search_groups;
for (size_t gid = 0; gid < groups.size(); ++gid) {
if (group_nnz[gid] + cur_fid_nnz <= nrow + max_conflict_cnt) {
search_groups.push_back(gid);
}
}
std::shuffle(search_groups.begin(), search_groups.end(), common::GlobalRandom());
if (param.max_search_group > 0 && search_groups.size() > param.max_search_group) {
search_groups.resize(param.max_search_group);
}
// examine each candidate group: is it okay to insert fid?
for (auto gid : search_groups) {
const size_t rest_max_cnt = max_conflict_cnt - group_conflict_cnt[gid];
const size_t cnt = GetConflictCount(conflict_marks[gid], column, rest_max_cnt);
if (cnt <= rest_max_cnt) {
need_new_group = false;
groups[gid].push_back(fid);
group_conflict_cnt[gid] += cnt;
group_nnz[gid] += cur_fid_nnz - cnt;
MarkUsed(&conflict_marks[gid], column);
break;
}
}
// create new group if necessary
if (need_new_group) {
groups.emplace_back();
groups.back().push_back(fid);
group_conflict_cnt.push_back(0);
conflict_marks.emplace_back(nrow, false);
MarkUsed(&conflict_marks.back(), column);
group_nnz.emplace_back(cur_fid_nnz);
}
}
return groups;
}
inline std::vector<std::vector<unsigned>>
FindGroups(const std::vector<unsigned>& feature_list,
const std::vector<size_t>& feature_nnz,
const ColumnMatrix& colmat,
size_t nrow,
const FastHistParam& param) {
XGBOOST_TYPE_SWITCH(colmat.dtype, {
return FindGroups_<DType>(feature_list, feature_nnz, colmat, nrow, param);
});
return std::vector<std::vector<unsigned>>(); // to avoid warning message
}
inline std::vector<std::vector<unsigned>>
FastFeatureGrouping(const GHistIndexMatrix& gmat,
const ColumnMatrix& colmat,
const FastHistParam& param) {
const size_t nrow = gmat.row_ptr.size() - 1;
const size_t nfeature = gmat.cut->row_ptr.size() - 1;
std::vector<unsigned> feature_list(nfeature);
std::iota(feature_list.begin(), feature_list.end(), 0);
// sort features by nonzero counts, descending order
std::vector<size_t> feature_nnz(nfeature);
std::vector<unsigned> features_by_nnz(feature_list);
gmat.GetFeatureCounts(&feature_nnz[0]);
std::sort(features_by_nnz.begin(), features_by_nnz.end(),
[&feature_nnz](unsigned a, unsigned b) {
return feature_nnz[a] > feature_nnz[b];
});
auto groups_alt1 = FindGroups(feature_list, feature_nnz, colmat, nrow, param);
auto groups_alt2 = FindGroups(features_by_nnz, feature_nnz, colmat, nrow, param);
auto& groups = (groups_alt1.size() > groups_alt2.size()) ? groups_alt2 : groups_alt1;
// take apart small, sparse groups, as it won't help speed
{
std::vector<std::vector<unsigned>> ret;
for (const auto& group : groups) {
if (group.size() <= 1 || group.size() >= 5) {
ret.push_back(group); // keep singleton groups and large (5+) groups
} else {
size_t nnz = 0;
for (auto fid : group) {
nnz += feature_nnz[fid];
}
double nnz_rate = static_cast<double>(nnz) / nrow;
// take apart small sparse group, due it will not gain on speed
if (nnz_rate <= param.sparse_threshold) {
for (auto fid : group) {
ret.emplace_back();
ret.back().push_back(fid);
}
} else {
ret.push_back(group);
}
}
}
groups = std::move(ret);
}
// shuffle groups
std::shuffle(groups.begin(), groups.end(), common::GlobalRandom());
return groups;
}
void GHistIndexBlockMatrix::Init(const GHistIndexMatrix& gmat,
const ColumnMatrix& colmat,
const FastHistParam& param) {
cut_ = gmat.cut;
const size_t nrow = gmat.row_ptr.size() - 1;
const uint32_t nbins = gmat.cut->row_ptr.back();
/* step 1: form feature groups */
auto groups = FastFeatureGrouping(gmat, colmat, param);
const auto nblock = static_cast<uint32_t>(groups.size());
/* step 2: build a new CSR matrix for each feature group */
std::vector<uint32_t> bin2block(nbins); // lookup table [bin id] => [block id]
for (uint32_t group_id = 0; group_id < nblock; ++group_id) {
for (auto& fid : groups[group_id]) {
const uint32_t bin_begin = gmat.cut->row_ptr[fid];
const uint32_t bin_end = gmat.cut->row_ptr[fid + 1];
for (uint32_t bin_id = bin_begin; bin_id < bin_end; ++bin_id) {
bin2block[bin_id] = group_id;
}
}
}
std::vector<std::vector<uint32_t>> index_temp(nblock);
std::vector<std::vector<size_t>> row_ptr_temp(nblock);
for (uint32_t block_id = 0; block_id < nblock; ++block_id) {
row_ptr_temp[block_id].push_back(0);
}
for (size_t rid = 0; rid < nrow; ++rid) {
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
for (size_t j = ibegin; j < iend; ++j) {
const uint32_t bin_id = gmat.index[j];
const uint32_t block_id = bin2block[bin_id];
index_temp[block_id].push_back(bin_id);
}
for (uint32_t block_id = 0; block_id < nblock; ++block_id) {
row_ptr_temp[block_id].push_back(index_temp[block_id].size());
}
}
/* step 3: concatenate CSR matrices into one (index, row_ptr) pair */
std::vector<size_t> index_blk_ptr;
std::vector<size_t> row_ptr_blk_ptr;
index_blk_ptr.push_back(0);
row_ptr_blk_ptr.push_back(0);
for (uint32_t block_id = 0; block_id < nblock; ++block_id) {
index_.insert(index_.end(), index_temp[block_id].begin(), index_temp[block_id].end());
row_ptr_.insert(row_ptr_.end(), row_ptr_temp[block_id].begin(), row_ptr_temp[block_id].end());
index_blk_ptr.push_back(index_.size());
row_ptr_blk_ptr.push_back(row_ptr_.size());
}
// save shortcut for each block
for (uint32_t block_id = 0; block_id < nblock; ++block_id) {
Block blk;
blk.index_begin = &index_[index_blk_ptr[block_id]];
blk.row_ptr_begin = &row_ptr_[row_ptr_blk_ptr[block_id]];
blk.index_end = &index_[index_blk_ptr[block_id + 1]];
blk.row_ptr_end = &row_ptr_[row_ptr_blk_ptr[block_id + 1]];
blocks_.push_back(blk);
}
}
void GHistBuilder::BuildHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat,
const std::vector<bst_uint>& feat_set,
GHistRow hist) {
data_.resize(nbins_ * nthread_, GHistEntry());
std::fill(data_.begin(), data_.end(), GHistEntry());
constexpr int kUnroll = 8; // loop unrolling factor
const auto nthread = static_cast<bst_omp_uint>(this->nthread_);
const size_t nrows = row_indices.end - row_indices.begin;
const size_t rest = nrows % kUnroll;
#pragma omp parallel for num_threads(nthread) schedule(guided)
for (bst_omp_uint i = 0; i < nrows - rest; i += kUnroll) {
const bst_omp_uint tid = omp_get_thread_num();
const size_t off = tid * nbins_;
size_t rid[kUnroll];
size_t ibegin[kUnroll];
size_t iend[kUnroll];
GradientPair stat[kUnroll];
for (int k = 0; k < kUnroll; ++k) {
rid[k] = row_indices.begin[i + k];
}
for (int k = 0; k < kUnroll; ++k) {
ibegin[k] = gmat.row_ptr[rid[k]];
iend[k] = gmat.row_ptr[rid[k] + 1];
}
for (int k = 0; k < kUnroll; ++k) {
stat[k] = gpair[rid[k]];
}
for (int k = 0; k < kUnroll; ++k) {
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
const uint32_t bin = gmat.index[j];
data_[off + bin].Add(stat[k]);
}
}
}
for (size_t i = nrows - rest; i < nrows; ++i) {
const size_t rid = row_indices.begin[i];
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
const GradientPair stat = gpair[rid];
for (size_t j = ibegin; j < iend; ++j) {
const uint32_t bin = gmat.index[j];
data_[bin].Add(stat);
}
}
/* reduction */
const uint32_t nbins = nbins_;
#pragma omp parallel for num_threads(nthread) schedule(static)
for (bst_omp_uint bin_id = 0; bin_id < bst_omp_uint(nbins); ++bin_id) {
for (bst_omp_uint tid = 0; tid < nthread; ++tid) {
hist.begin[bin_id].Add(data_[tid * nbins_ + bin_id]);
}
}
}
void GHistBuilder::BuildBlockHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexBlockMatrix& gmatb,
const std::vector<bst_uint>& feat_set,
GHistRow hist) {
constexpr int kUnroll = 8; // loop unrolling factor
const size_t nblock = gmatb.GetNumBlock();
const size_t nrows = row_indices.end - row_indices.begin;
const size_t rest = nrows % kUnroll;
#if defined(_OPENMP)
const auto nthread = static_cast<bst_omp_uint>(this->nthread_);
#endif
#pragma omp parallel for num_threads(nthread) schedule(guided)
for (bst_omp_uint bid = 0; bid < nblock; ++bid) {
auto gmat = gmatb[bid];
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
size_t rid[kUnroll];
size_t ibegin[kUnroll];
size_t iend[kUnroll];
GradientPair stat[kUnroll];
for (int k = 0; k < kUnroll; ++k) {
rid[k] = row_indices.begin[i + k];
}
for (int k = 0; k < kUnroll; ++k) {
ibegin[k] = gmat.row_ptr[rid[k]];
iend[k] = gmat.row_ptr[rid[k] + 1];
}
for (int k = 0; k < kUnroll; ++k) {
stat[k] = gpair[rid[k]];
}
for (int k = 0; k < kUnroll; ++k) {
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
const uint32_t bin = gmat.index[j];
hist.begin[bin].Add(stat[k]);
}
}
}
for (size_t i = nrows - rest; i < nrows; ++i) {
const size_t rid = row_indices.begin[i];
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
const GradientPair stat = gpair[rid];
for (size_t j = ibegin; j < iend; ++j) {
const uint32_t bin = gmat.index[j];
hist.begin[bin].Add(stat);
}
}
}
}
void GHistBuilder::SubtractionTrick(GHistRow self, GHistRow sibling, GHistRow parent) {
const uint32_t nbins = static_cast<bst_omp_uint>(nbins_);
constexpr int kUnroll = 8; // loop unrolling factor
const uint32_t rest = nbins % kUnroll;
#if defined(_OPENMP)
const auto nthread = static_cast<bst_omp_uint>(this->nthread_);
#endif
#pragma omp parallel for num_threads(nthread) schedule(static)
for (bst_omp_uint bin_id = 0;
bin_id < static_cast<bst_omp_uint>(nbins - rest); bin_id += kUnroll) {
GHistEntry pb[kUnroll];
GHistEntry sb[kUnroll];
for (int k = 0; k < kUnroll; ++k) {
pb[k] = parent.begin[bin_id + k];
}
for (int k = 0; k < kUnroll; ++k) {
sb[k] = sibling.begin[bin_id + k];
}
for (int k = 0; k < kUnroll; ++k) {
self.begin[bin_id + k].SetSubtract(pb[k], sb[k]);
}
}
for (uint32_t bin_id = nbins - rest; bin_id < nbins; ++bin_id) {
self.begin[bin_id].SetSubtract(parent.begin[bin_id], sibling.begin[bin_id]);
}
}
} // namespace common
} // namespace xgboost