xgboost/tests/cpp/predictor/test_predictor.cc
Jiaming Yuan e8c5c53e2f
Use Predictor for dart. (#6693)
* Use normal predictor for dart booster.
* Implement `inplace_predict` for dart.
* Enable `dart` for dask interface now that it's thread-safe.
* categorical data should be working out of box for dart now.

The implementation is not very efficient as it has to pull back the data and
apply weight for each tree, but still a significant improvement over previous
implementation as now we no longer binary search for each sample.

* Fix output prediction shape on dataframe.
2021-02-09 23:30:19 +08:00

236 lines
8.0 KiB
C++

/*!
* Copyright 2020-2021 by Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include <xgboost/data.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/generic_parameters.h>
#include "test_predictor.h"
#include "../helpers.h"
#include "../../../src/common/io.h"
#include "../../../src/common/categorical.h"
#include "../../../src/common/bitfield.h"
namespace xgboost {
TEST(Predictor, PredictionCache) {
size_t constexpr kRows = 16, kCols = 4;
PredictionContainer container;
DMatrix* m;
// Add a cache that is immediately expired.
auto add_cache = [&]() {
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
container.Cache(p_dmat, GenericParameter::kCpuId);
m = p_dmat.get();
};
add_cache();
ASSERT_EQ(container.Container().size(), 0ul);
add_cache();
EXPECT_ANY_THROW(container.Entry(m));
}
void TestTrainingPrediction(size_t rows, size_t bins,
std::string tree_method,
std::shared_ptr<DMatrix> p_full,
std::shared_ptr<DMatrix> p_hist) {
size_t constexpr kCols = 16;
size_t constexpr kClasses = 3;
size_t constexpr kIters = 3;
std::unique_ptr<Learner> learner;
auto train = [&](std::string predictor, HostDeviceVector<float> *out) {
auto &h_label = p_hist->Info().labels_.HostVector();
h_label.resize(rows);
for (size_t i = 0; i < rows; ++i) {
h_label[i] = i % kClasses;
}
learner.reset(Learner::Create({}));
learner->SetParam("tree_method", tree_method);
learner->SetParam("objective", "multi:softprob");
learner->SetParam("num_feature", std::to_string(kCols));
learner->SetParam("num_class", std::to_string(kClasses));
learner->SetParam("max_bin", std::to_string(bins));
learner->Configure();
for (size_t i = 0; i < kIters; ++i) {
learner->UpdateOneIter(i, p_hist);
}
HostDeviceVector<float> from_full;
learner->Predict(p_full, false, &from_full, 0, 0);
HostDeviceVector<float> from_hist;
learner->Predict(p_hist, false, &from_hist, 0, 0);
for (size_t i = 0; i < rows; ++i) {
EXPECT_NEAR(from_hist.ConstHostVector()[i],
from_full.ConstHostVector()[i], kRtEps);
}
};
HostDeviceVector<float> predictions_0;
train("cpu_predictor", &predictions_0);
HostDeviceVector<float> predictions_1;
train("gpu_predictor", &predictions_1);
}
void TestInplacePrediction(dmlc::any x, std::string predictor,
bst_row_t rows, bst_feature_t cols,
int32_t device) {
size_t constexpr kClasses { 4 };
auto gen = RandomDataGenerator{rows, cols, 0.5}.Device(device);
std::shared_ptr<DMatrix> m = gen.GenerateDMatrix(true, false, kClasses);
std::unique_ptr<Learner> learner {
Learner::Create({m})
};
learner->SetParam("num_parallel_tree", "4");
learner->SetParam("num_class", std::to_string(kClasses));
learner->SetParam("seed", "0");
learner->SetParam("subsample", "0.5");
learner->SetParam("gpu_id", std::to_string(device));
learner->SetParam("predictor", predictor);
for (int32_t it = 0; it < 4; ++it) {
learner->UpdateOneIter(it, m);
}
HostDeviceVector<float> *p_out_predictions_0{nullptr};
learner->InplacePredict(x, nullptr, PredictionType::kMargin,
std::numeric_limits<float>::quiet_NaN(),
&p_out_predictions_0, 0, 2);
CHECK(p_out_predictions_0);
HostDeviceVector<float> predict_0 (p_out_predictions_0->Size());
predict_0.Copy(*p_out_predictions_0);
HostDeviceVector<float> *p_out_predictions_1{nullptr};
learner->InplacePredict(x, nullptr, PredictionType::kMargin,
std::numeric_limits<float>::quiet_NaN(),
&p_out_predictions_1, 2, 4);
CHECK(p_out_predictions_1);
HostDeviceVector<float> predict_1 (p_out_predictions_1->Size());
predict_1.Copy(*p_out_predictions_1);
HostDeviceVector<float>* p_out_predictions{nullptr};
learner->InplacePredict(x, nullptr, PredictionType::kMargin,
std::numeric_limits<float>::quiet_NaN(),
&p_out_predictions, 0, 4);
auto& h_pred = p_out_predictions->HostVector();
auto& h_pred_0 = predict_0.HostVector();
auto& h_pred_1 = predict_1.HostVector();
ASSERT_EQ(h_pred.size(), rows * kClasses);
ASSERT_EQ(h_pred.size(), h_pred_0.size());
ASSERT_EQ(h_pred.size(), h_pred_1.size());
for (size_t i = 0; i < h_pred.size(); ++i) {
// Need to remove the global bias here.
ASSERT_NEAR(h_pred[i], h_pred_0[i] + h_pred_1[i] - 0.5f, kRtEps);
}
learner->SetParam("gpu_id", "-1");
learner->Configure();
}
void TestPredictionWithLesserFeatures(std::string predictor_name) {
size_t constexpr kRows = 256, kTrainCols = 256, kTestCols = 4, kIters = 4;
auto m_train = RandomDataGenerator(kRows, kTrainCols, 0.5).GenerateDMatrix(true);
auto m_test = RandomDataGenerator(kRows, kTestCols, 0.5).GenerateDMatrix(false);
std::unique_ptr<Learner> learner{Learner::Create({m_train})};
for (size_t i = 0; i < kIters; ++i) {
learner->UpdateOneIter(i, m_train);
}
HostDeviceVector<float> prediction;
learner->SetParam("predictor", predictor_name);
learner->Configure();
Json config{Object()};
learner->SaveConfig(&config);
ASSERT_EQ(get<String>(config["learner"]["gradient_booster"]["gbtree_train_param"]["predictor"]), predictor_name);
learner->Predict(m_test, false, &prediction, 0, 0);
ASSERT_EQ(prediction.Size(), kRows);
auto m_invalid = RandomDataGenerator(kRows, kTrainCols + 1, 0.5).GenerateDMatrix(false);
ASSERT_THROW({learner->Predict(m_invalid, false, &prediction, 0, 0);}, dmlc::Error);
#if defined(XGBOOST_USE_CUDA)
HostDeviceVector<float> from_cpu;
learner->SetParam("predictor", "cpu_predictor");
learner->Predict(m_test, false, &from_cpu, 0, 0);
HostDeviceVector<float> from_cuda;
learner->SetParam("predictor", "gpu_predictor");
learner->Predict(m_test, false, &from_cuda, 0, 0);
auto const& h_cpu = from_cpu.ConstHostVector();
auto const& h_gpu = from_cuda.ConstHostVector();
for (size_t i = 0; i < h_cpu.size(); ++i) {
ASSERT_NEAR(h_cpu[i], h_gpu[i], kRtEps);
}
#endif // defined(XGBOOST_USE_CUDA)
}
void TestCategoricalPrediction(std::string name) {
size_t constexpr kCols = 10;
PredictionCacheEntry out_predictions;
LearnerModelParam param;
param.num_feature = kCols;
param.num_output_group = 1;
param.base_score = 0.5;
gbm::GBTreeModel model(&param);
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
auto& p_tree = trees.front();
uint32_t split_ind = 3;
bst_cat_t split_cat = 4;
float left_weight = 1.3f;
float right_weight = 1.7f;
std::vector<uint32_t> split_cats(LBitField32::ComputeStorageSize(split_cat));
LBitField32 cats_bits(split_cats);
cats_bits.Set(split_cat);
p_tree->ExpandCategorical(0, split_ind, split_cats, true, 1.5f,
left_weight, right_weight,
3.0f, 2.2f, 7.0f, 9.0f);
model.CommitModel(std::move(trees), 0);
GenericParameter runtime;
runtime.gpu_id = 0;
std::unique_ptr<Predictor> predictor{
Predictor::Create(name.c_str(), &runtime)};
std::vector<float> row(kCols);
row[split_ind] = split_cat;
auto m = GetDMatrixFromData(row, 1, kCols);
predictor->InitOutPredictions(m->Info(), &out_predictions.predictions, model);
predictor->PredictBatch(m.get(), &out_predictions, model, 0);
ASSERT_EQ(out_predictions.predictions.Size(), 1ul);
ASSERT_EQ(out_predictions.predictions.HostVector()[0],
right_weight + param.base_score); // go to right for matching cat
row[split_ind] = split_cat + 1;
m = GetDMatrixFromData(row, 1, kCols);
out_predictions.version = 0;
predictor->InitOutPredictions(m->Info(), &out_predictions.predictions, model);
predictor->PredictBatch(m.get(), &out_predictions, model, 0);
ASSERT_EQ(out_predictions.predictions.HostVector()[0],
left_weight + param.base_score);
}
} // namespace xgboost