xgboost/old_src/tree/updater_histmaker-inl.hpp
2016-01-16 10:24:00 -08:00

770 lines
30 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file updater_histmaker-inl.hpp
* \brief use histogram counting to construct a tree
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_UPDATER_HISTMAKER_INL_HPP_
#define XGBOOST_TREE_UPDATER_HISTMAKER_INL_HPP_
#include <vector>
#include <algorithm>
#include "../sync/sync.h"
#include "../utils/quantile.h"
#include "../utils/group_data.h"
#include "./updater_basemaker-inl.hpp"
namespace xgboost {
namespace tree {
template<typename TStats>
class HistMaker: public BaseMaker {
public:
virtual ~HistMaker(void) {}
virtual void Update(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector<RegTree*> &trees) {
TStats::CheckInfo(info);
// rescale learning rate according to size of trees
float lr = param.learning_rate;
param.learning_rate = lr / trees.size();
// build tree
for (size_t i = 0; i < trees.size(); ++i) {
this->Update(gpair, p_fmat, info, trees[i]);
}
param.learning_rate = lr;
}
protected:
/*! \brief a single histogram */
struct HistUnit {
/*! \brief cutting point of histogram, contains maximum point */
const bst_float *cut;
/*! \brief content of statistics data */
TStats *data;
/*! \brief size of histogram */
unsigned size;
// default constructor
HistUnit(void) {}
// constructor
HistUnit(const bst_float *cut, TStats *data, unsigned size)
: cut(cut), data(data), size(size) {}
/*! \brief add a histogram to data */
inline void Add(bst_float fv,
const std::vector<bst_gpair> &gpair,
const BoosterInfo &info,
const bst_uint ridx) {
unsigned i = std::upper_bound(cut, cut + size, fv) - cut;
utils::Assert(size != 0, "try insert into size=0");
utils::Assert(i < size,
"maximum value must be in cut, fv = %g, cutmax=%g", fv, cut[size-1]);
data[i].Add(gpair, info, ridx);
}
};
/*! \brief a set of histograms from different index */
struct HistSet {
/*! \brief the index pointer of each histunit */
const unsigned *rptr;
/*! \brief cutting points in each histunit */
const bst_float *cut;
/*! \brief data in different hist unit */
std::vector<TStats> data;
/*! \brief */
inline HistUnit operator[](size_t fid) {
return HistUnit(cut + rptr[fid],
&data[0] + rptr[fid],
rptr[fid+1] - rptr[fid]);
}
};
// thread workspace
struct ThreadWSpace {
/*! \brief actual unit pointer */
std::vector<unsigned> rptr;
/*! \brief cut field */
std::vector<bst_float> cut;
// per thread histset
std::vector<HistSet> hset;
// initialize the hist set
inline void Init(const TrainParam &param, int nthread) {
hset.resize(nthread);
// cleanup statistics
for (int tid = 0; tid < nthread; ++tid) {
for (size_t i = 0; i < hset[tid].data.size(); ++i) {
hset[tid].data[i].Clear();
}
hset[tid].rptr = BeginPtr(rptr);
hset[tid].cut = BeginPtr(cut);
hset[tid].data.resize(cut.size(), TStats(param));
}
}
// aggregate all statistics to hset[0]
inline void Aggregate(void) {
bst_omp_uint nsize = static_cast<bst_omp_uint>(cut.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
for (size_t tid = 1; tid < hset.size(); ++tid) {
hset[0].data[i].Add(hset[tid].data[i]);
}
}
}
/*! \brief clear the workspace */
inline void Clear(void) {
cut.clear(); rptr.resize(1); rptr[0] = 0;
}
/*! \brief total size */
inline size_t Size(void) const {
return rptr.size() - 1;
}
};
// workspace of thread
ThreadWSpace wspace;
// reducer for histogram
rabit::Reducer<TStats, TStats::Reduce> histred;
// set of working features
std::vector<bst_uint> fwork_set;
// update function implementation
virtual void Update(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
RegTree *p_tree) {
this->InitData(gpair, *p_fmat, info.root_index, *p_tree);
this->InitWorkSet(p_fmat, *p_tree, &fwork_set);
for (int depth = 0; depth < param.max_depth; ++depth) {
// reset and propose candidate split
this->ResetPosAndPropose(gpair, p_fmat, info, fwork_set, *p_tree);
// create histogram
this->CreateHist(gpair, p_fmat, info, fwork_set, *p_tree);
// find split based on histogram statistics
this->FindSplit(depth, gpair, p_fmat, info, fwork_set, p_tree);
// reset position after split
this->ResetPositionAfterSplit(p_fmat, *p_tree);
this->UpdateQueueExpand(*p_tree);
// if nothing left to be expand, break
if (qexpand.size() == 0) break;
}
for (size_t i = 0; i < qexpand.size(); ++i) {
const int nid = qexpand[i];
(*p_tree)[nid].set_leaf(p_tree->stat(nid).base_weight * param.learning_rate);
}
}
// this function does two jobs
// (1) reset the position in array position, to be the latest leaf id
// (2) propose a set of candidate cuts and set wspace.rptr wspace.cut correctly
virtual void ResetPosAndPropose(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector <bst_uint> &fset,
const RegTree &tree) = 0;
// initialize the current working set of features in this round
virtual void InitWorkSet(IFMatrix *p_fmat,
const RegTree &tree,
std::vector<bst_uint> *p_fset) {
p_fset->resize(tree.param.num_feature);
for (size_t i = 0; i < p_fset->size(); ++i) {
(*p_fset)[i] = static_cast<unsigned>(i);
}
}
// reset position after split, this is not a must, depending on implementation
virtual void ResetPositionAfterSplit(IFMatrix *p_fmat,
const RegTree &tree) {
}
virtual void CreateHist(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector <bst_uint> &fset,
const RegTree &tree) = 0;
private:
inline void EnumerateSplit(const HistUnit &hist,
const TStats &node_sum,
bst_uint fid,
SplitEntry *best,
TStats *left_sum) {
if (hist.size == 0) return;
double root_gain = node_sum.CalcGain(param);
TStats s(param), c(param);
for (bst_uint i = 0; i < hist.size; ++i) {
s.Add(hist.data[i]);
if (s.sum_hess >= param.min_child_weight) {
c.SetSubstract(node_sum, s);
if (c.sum_hess >= param.min_child_weight) {
double loss_chg = s.CalcGain(param) + c.CalcGain(param) - root_gain;
if (best->Update(static_cast<float>(loss_chg), fid, hist.cut[i], false)) {
*left_sum = s;
}
}
}
}
s.Clear();
for (bst_uint i = hist.size - 1; i != 0; --i) {
s.Add(hist.data[i]);
if (s.sum_hess >= param.min_child_weight) {
c.SetSubstract(node_sum, s);
if (c.sum_hess >= param.min_child_weight) {
double loss_chg = s.CalcGain(param) + c.CalcGain(param) - root_gain;
if (best->Update(static_cast<float>(loss_chg), fid, hist.cut[i-1], true)) {
*left_sum = c;
}
}
}
}
}
inline void FindSplit(int depth,
const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector <bst_uint> &fset,
RegTree *p_tree) {
const size_t num_feature = fset.size();
// get the best split condition for each node
std::vector<SplitEntry> sol(qexpand.size());
std::vector<TStats> left_sum(qexpand.size());
bst_omp_uint nexpand = static_cast<bst_omp_uint>(qexpand.size());
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint wid = 0; wid < nexpand; ++wid) {
const int nid = qexpand[wid];
utils::Assert(node2workindex[nid] == static_cast<int>(wid),
"node2workindex inconsistent");
SplitEntry &best = sol[wid];
TStats &node_sum = wspace.hset[0][num_feature + wid * (num_feature + 1)].data[0];
for (size_t i = 0; i < fset.size(); ++i) {
EnumerateSplit(this->wspace.hset[0][i + wid * (num_feature+1)],
node_sum, fset[i], &best, &left_sum[wid]);
}
}
// get the best result, we can synchronize the solution
for (bst_omp_uint wid = 0; wid < nexpand; ++wid) {
const int nid = qexpand[wid];
const SplitEntry &best = sol[wid];
const TStats &node_sum = wspace.hset[0][num_feature + wid * (num_feature + 1)].data[0];
this->SetStats(p_tree, nid, node_sum);
// set up the values
p_tree->stat(nid).loss_chg = best.loss_chg;
// now we know the solution in snode[nid], set split
if (best.loss_chg > rt_eps) {
p_tree->AddChilds(nid);
(*p_tree)[nid].set_split(best.split_index(),
best.split_value, best.default_left());
// mark right child as 0, to indicate fresh leaf
(*p_tree)[(*p_tree)[nid].cleft()].set_leaf(0.0f, 0);
(*p_tree)[(*p_tree)[nid].cright()].set_leaf(0.0f, 0);
// right side sum
TStats right_sum;
right_sum.SetSubstract(node_sum, left_sum[wid]);
this->SetStats(p_tree, (*p_tree)[nid].cleft(), left_sum[wid]);
this->SetStats(p_tree, (*p_tree)[nid].cright(), right_sum);
} else {
(*p_tree)[nid].set_leaf(p_tree->stat(nid).base_weight * param.learning_rate);
}
}
}
inline void SetStats(RegTree *p_tree, int nid, const TStats &node_sum) {
p_tree->stat(nid).base_weight = static_cast<float>(node_sum.CalcWeight(param));
p_tree->stat(nid).sum_hess = static_cast<float>(node_sum.sum_hess);
node_sum.SetLeafVec(param, p_tree->leafvec(nid));
}
};
template<typename TStats>
class CQHistMaker: public HistMaker<TStats> {
protected:
struct HistEntry {
typename HistMaker<TStats>::HistUnit hist;
unsigned istart;
/*!
* \brief add a histogram to data,
* do linear scan, start from istart
*/
inline void Add(bst_float fv,
const std::vector<bst_gpair> &gpair,
const BoosterInfo &info,
const bst_uint ridx) {
while (istart < hist.size && !(fv < hist.cut[istart])) ++istart;
utils::Assert(istart != hist.size, "the bound variable must be max");
hist.data[istart].Add(gpair, info, ridx);
}
/*!
* \brief add a histogram to data,
* do linear scan, start from istart
*/
inline void Add(bst_float fv,
bst_gpair gstats) {
while (istart < hist.size && !(fv < hist.cut[istart])) ++istart;
utils::Assert(istart != hist.size, "the bound variable must be max");
hist.data[istart].Add(gstats);
}
};
// sketch type used for this
typedef utils::WXQuantileSketch<bst_float, bst_float> WXQSketch;
// initialize the work set of tree
virtual void InitWorkSet(IFMatrix *p_fmat,
const RegTree &tree,
std::vector<bst_uint> *p_fset) {
feat_helper.InitByCol(p_fmat, tree);
feat_helper.SampleCol(this->param.colsample_bytree, p_fset);
}
// code to create histogram
virtual void CreateHist(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector<bst_uint> &fset,
const RegTree &tree) {
// fill in reverse map
feat2workindex.resize(tree.param.num_feature);
std::fill(feat2workindex.begin(), feat2workindex.end(), -1);
for (size_t i = 0; i < fset.size(); ++i) {
feat2workindex[fset[i]] = static_cast<int>(i);
}
// start to work
this->wspace.Init(this->param, 1);
// if it is C++11, use lazy evaluation for Allreduce,
// to gain speedup in recovery
#if __cplusplus >= 201103L
auto lazy_get_hist = [&]()
#endif
{
thread_hist.resize(this->get_nthread());
// start accumulating statistics
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator(fset);
iter->BeforeFirst();
while (iter->Next()) {
const ColBatch &batch = iter->Value();
// start enumeration
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < nsize; ++i) {
int offset = feat2workindex[batch.col_index[i]];
if (offset >= 0) {
this->UpdateHistCol(gpair, batch[i], info, tree,
fset, offset,
&thread_hist[omp_get_thread_num()]);
}
}
}
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const int nid = this->qexpand[i];
const int wid = this->node2workindex[nid];
this->wspace.hset[0][fset.size() + wid * (fset.size()+1)]
.data[0] = node_stats[nid];
}
};
// sync the histogram
// if it is C++11, use lazy evaluation for Allreduce
#if __cplusplus >= 201103L
this->histred.Allreduce(BeginPtr(this->wspace.hset[0].data),
this->wspace.hset[0].data.size(), lazy_get_hist);
#else
this->histred.Allreduce(BeginPtr(this->wspace.hset[0].data), this->wspace.hset[0].data.size());
#endif
}
virtual void ResetPositionAfterSplit(IFMatrix *p_fmat,
const RegTree &tree) {
this->ResetPositionCol(this->qexpand, p_fmat, tree);
}
virtual void ResetPosAndPropose(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector<bst_uint> &fset,
const RegTree &tree) {
// fill in reverse map
feat2workindex.resize(tree.param.num_feature);
std::fill(feat2workindex.begin(), feat2workindex.end(), -1);
freal_set.clear();
for (size_t i = 0; i < fset.size(); ++i) {
if (feat_helper.Type(fset[i]) == 2) {
feat2workindex[fset[i]] = static_cast<int>(freal_set.size());
freal_set.push_back(fset[i]);
} else {
feat2workindex[fset[i]] = -2;
}
}
this->GetNodeStats(gpair, *p_fmat, tree, info,
&thread_stats, &node_stats);
sketchs.resize(this->qexpand.size() * freal_set.size());
for (size_t i = 0; i < sketchs.size(); ++i) {
sketchs[i].Init(info.num_row, this->param.sketch_eps);
}
// intitialize the summary array
summary_array.resize(sketchs.size());
// setup maximum size
unsigned max_size = this->param.max_sketch_size();
for (size_t i = 0; i < sketchs.size(); ++i) {
summary_array[i].Reserve(max_size);
}
// if it is C++11, use lazy evaluation for Allreduce
#if __cplusplus >= 201103L
auto lazy_get_summary = [&]()
#endif
{
// get smmary
thread_sketch.resize(this->get_nthread());
// number of rows in
const size_t nrows = p_fmat->buffered_rowset().size();
// start accumulating statistics
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator(freal_set);
iter->BeforeFirst();
while (iter->Next()) {
const ColBatch &batch = iter->Value();
// start enumeration
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < nsize; ++i) {
int offset = feat2workindex[batch.col_index[i]];
if (offset >= 0) {
this->UpdateSketchCol(gpair, batch[i], tree,
node_stats,
freal_set, offset,
batch[i].length == nrows,
&thread_sketch[omp_get_thread_num()]);
}
}
}
for (size_t i = 0; i < sketchs.size(); ++i) {
utils::WXQuantileSketch<bst_float, bst_float>::SummaryContainer out;
sketchs[i].GetSummary(&out);
summary_array[i].SetPrune(out, max_size);
}
utils::Assert(summary_array.size() == sketchs.size(), "shape mismatch");
};
if (summary_array.size() != 0) {
size_t nbytes = WXQSketch::SummaryContainer::CalcMemCost(max_size);
#if __cplusplus >= 201103L
sreducer.Allreduce(BeginPtr(summary_array), nbytes, summary_array.size(), lazy_get_summary);
#else
sreducer.Allreduce(BeginPtr(summary_array), nbytes, summary_array.size());
#endif
}
// now we get the final result of sketch, setup the cut
this->wspace.cut.clear();
this->wspace.rptr.clear();
this->wspace.rptr.push_back(0);
for (size_t wid = 0; wid < this->qexpand.size(); ++wid) {
for (size_t i = 0; i < fset.size(); ++i) {
int offset = feat2workindex[fset[i]];
if (offset >= 0) {
const WXQSketch::Summary &a = summary_array[wid * freal_set.size() + offset];
for (size_t i = 1; i < a.size; ++i) {
bst_float cpt = a.data[i].value - rt_eps;
if (i == 1 || cpt > this->wspace.cut.back()) {
this->wspace.cut.push_back(cpt);
}
}
// push a value that is greater than anything
if (a.size != 0) {
bst_float cpt = a.data[a.size - 1].value;
// this must be bigger than last value in a scale
bst_float last = cpt + fabs(cpt) + rt_eps;
this->wspace.cut.push_back(last);
}
this->wspace.rptr.push_back(static_cast<unsigned>(this->wspace.cut.size()));
} else {
utils::Assert(offset == -2, "BUG in mark");
bst_float cpt = feat_helper.MaxValue(fset[i]);
this->wspace.cut.push_back(cpt + fabs(cpt) + rt_eps);
this->wspace.rptr.push_back(static_cast<unsigned>(this->wspace.cut.size()));
}
}
// reserve last value for global statistics
this->wspace.cut.push_back(0.0f);
this->wspace.rptr.push_back(static_cast<unsigned>(this->wspace.cut.size()));
}
utils::Assert(this->wspace.rptr.size() ==
(fset.size() + 1) * this->qexpand.size() + 1,
"cut space inconsistent");
}
private:
inline void UpdateHistCol(const std::vector<bst_gpair> &gpair,
const ColBatch::Inst &c,
const BoosterInfo &info,
const RegTree &tree,
const std::vector<bst_uint> &fset,
bst_uint fid_offset,
std::vector<HistEntry> *p_temp) {
if (c.length == 0) return;
// initialize sbuilder for use
std::vector<HistEntry> &hbuilder = *p_temp;
hbuilder.resize(tree.param.num_nodes);
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const unsigned nid = this->qexpand[i];
const unsigned wid = this->node2workindex[nid];
hbuilder[nid].istart = 0;
hbuilder[nid].hist = this->wspace.hset[0][fid_offset + wid * (fset.size()+1)];
}
if (TStats::kSimpleStats != 0 && this->param.cache_opt != 0) {
const bst_uint kBuffer = 32;
bst_uint align_length = c.length / kBuffer * kBuffer;
int buf_position[kBuffer];
bst_gpair buf_gpair[kBuffer];
for (bst_uint j = 0; j < align_length; j += kBuffer) {
for (bst_uint i = 0; i < kBuffer; ++i) {
bst_uint ridx = c[j + i].index;
buf_position[i] = this->position[ridx];
buf_gpair[i] = gpair[ridx];
}
for (bst_uint i = 0; i < kBuffer; ++i) {
const int nid = buf_position[i];
if (nid >= 0) {
hbuilder[nid].Add(c[j + i].fvalue, buf_gpair[i]);
}
}
}
for (bst_uint j = align_length; j < c.length; ++j) {
const bst_uint ridx = c[j].index;
const int nid = this->position[ridx];
if (nid >= 0) {
hbuilder[nid].Add(c[j].fvalue, gpair[ridx]);
}
}
} else {
for (bst_uint j = 0; j < c.length; ++j) {
const bst_uint ridx = c[j].index;
const int nid = this->position[ridx];
if (nid >= 0) {
hbuilder[nid].Add(c[j].fvalue, gpair, info, ridx);
}
}
}
}
inline void UpdateSketchCol(const std::vector<bst_gpair> &gpair,
const ColBatch::Inst &c,
const RegTree &tree,
const std::vector<TStats> &nstats,
const std::vector<bst_uint> &frealset,
bst_uint offset,
bool col_full,
std::vector<BaseMaker::SketchEntry> *p_temp) {
if (c.length == 0) return;
// initialize sbuilder for use
std::vector<BaseMaker::SketchEntry> &sbuilder = *p_temp;
sbuilder.resize(tree.param.num_nodes);
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const unsigned nid = this->qexpand[i];
const unsigned wid = this->node2workindex[nid];
sbuilder[nid].sum_total = 0.0f;
sbuilder[nid].sketch = &sketchs[wid * frealset.size() + offset];
}
if (!col_full) {
// first pass, get sum of weight, TODO, optimization to skip first pass
for (bst_uint j = 0; j < c.length; ++j) {
const bst_uint ridx = c[j].index;
const int nid = this->position[ridx];
if (nid >= 0) {
sbuilder[nid].sum_total += gpair[ridx].hess;
}
}
} else {
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const unsigned nid = this->qexpand[i];
sbuilder[nid].sum_total = static_cast<bst_float>(nstats[nid].sum_hess);
}
}
// if only one value, no need to do second pass
if (c[0].fvalue == c[c.length-1].fvalue) {
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const int nid = this->qexpand[i];
sbuilder[nid].sketch->Push(c[0].fvalue, static_cast<bst_float>(sbuilder[nid].sum_total));
}
return;
}
// two pass scan
unsigned max_size = this->param.max_sketch_size();
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const int nid = this->qexpand[i];
sbuilder[nid].Init(max_size);
}
// second pass, build the sketch
if (TStats::kSimpleStats != 0 && this->param.cache_opt != 0) {
const bst_uint kBuffer = 32;
bst_uint align_length = c.length / kBuffer * kBuffer;
int buf_position[kBuffer];
bst_float buf_hess[kBuffer];
for (bst_uint j = 0; j < align_length; j += kBuffer) {
for (bst_uint i = 0; i < kBuffer; ++i) {
bst_uint ridx = c[j + i].index;
buf_position[i] = this->position[ridx];
buf_hess[i] = gpair[ridx].hess;
}
for (bst_uint i = 0; i < kBuffer; ++i) {
const int nid = buf_position[i];
if (nid >= 0) {
sbuilder[nid].Push(c[j + i].fvalue, buf_hess[i], max_size);
}
}
}
for (bst_uint j = align_length; j < c.length; ++j) {
const bst_uint ridx = c[j].index;
const int nid = this->position[ridx];
if (nid >= 0) {
sbuilder[nid].Push(c[j].fvalue, gpair[ridx].hess, max_size);
}
}
} else {
for (bst_uint j = 0; j < c.length; ++j) {
const bst_uint ridx = c[j].index;
const int nid = this->position[ridx];
if (nid >= 0) {
sbuilder[nid].Push(c[j].fvalue, gpair[ridx].hess, max_size);
}
}
}
for (size_t i = 0; i < this->qexpand.size(); ++i) {
const int nid = this->qexpand[i];
sbuilder[nid].Finalize(max_size);
}
}
// feature helper
BaseMaker::FMetaHelper feat_helper;
// temp space to map feature id to working index
std::vector<int> feat2workindex;
// set of index from fset that are real
std::vector<bst_uint> freal_set;
// thread temp data
std::vector< std::vector<BaseMaker::SketchEntry> > thread_sketch;
// used to hold statistics
std::vector< std::vector<TStats> > thread_stats;
// used to hold start pointer
std::vector< std::vector<HistEntry> > thread_hist;
// node statistics
std::vector<TStats> node_stats;
// summary array
std::vector<WXQSketch::SummaryContainer> summary_array;
// reducer for summary
rabit::SerializeReducer<WXQSketch::SummaryContainer> sreducer;
// per node, per feature sketch
std::vector< utils::WXQuantileSketch<bst_float, bst_float> > sketchs;
};
template<typename TStats>
class QuantileHistMaker: public HistMaker<TStats> {
protected:
typedef utils::WXQuantileSketch<bst_float, bst_float> WXQSketch;
virtual void ResetPosAndPropose(const std::vector<bst_gpair> &gpair,
IFMatrix *p_fmat,
const BoosterInfo &info,
const std::vector <bst_uint> &fset,
const RegTree &tree) {
// initialize the data structure
int nthread = BaseMaker::get_nthread();
sketchs.resize(this->qexpand.size() * tree.param.num_feature);
for (size_t i = 0; i < sketchs.size(); ++i) {
sketchs[i].Init(info.num_row, this->param.sketch_eps);
}
// start accumulating statistics
utils::IIterator<RowBatch> *iter = p_fmat->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
// parallel convert to column major format
utils::ParallelGroupBuilder<SparseBatch::Entry> builder(&col_ptr, &col_data, &thread_col_ptr);
builder.InitBudget(tree.param.num_feature, nthread);
const bst_omp_uint nbatch = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nbatch; ++i) {
RowBatch::Inst inst = batch[i];
const bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
int nid = this->position[ridx];
if (nid >= 0) {
if (!tree[nid].is_leaf()) {
this->position[ridx] = nid = HistMaker<TStats>::NextLevel(inst, tree, nid);
}
if (this->node2workindex[nid] < 0) {
this->position[ridx] = ~nid;
} else {
for (bst_uint j = 0; j < inst.length; ++j) {
builder.AddBudget(inst[j].index, omp_get_thread_num());
}
}
}
}
builder.InitStorage();
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nbatch; ++i) {
RowBatch::Inst inst = batch[i];
const bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
const int nid = this->position[ridx];
if (nid >= 0) {
for (bst_uint j = 0; j < inst.length; ++j) {
builder.Push(inst[j].index,
SparseBatch::Entry(nid, inst[j].fvalue),
omp_get_thread_num());
}
}
}
// start putting things into sketch
const bst_omp_uint nfeat = col_ptr.size() - 1;
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint k = 0; k < nfeat; ++k) {
for (size_t i = col_ptr[k]; i < col_ptr[k+1]; ++i) {
const SparseBatch::Entry &e = col_data[i];
const int wid = this->node2workindex[e.index];
sketchs[wid * tree.param.num_feature + k].Push(e.fvalue, gpair[e.index].hess);
}
}
}
// setup maximum size
unsigned max_size = this->param.max_sketch_size();
// synchronize sketch
summary_array.resize(sketchs.size());
for (size_t i = 0; i < sketchs.size(); ++i) {
utils::WQuantileSketch<bst_float, bst_float>::SummaryContainer out;
sketchs[i].GetSummary(&out);
summary_array[i].Reserve(max_size);
summary_array[i].SetPrune(out, max_size);
}
size_t nbytes = WXQSketch::SummaryContainer::CalcMemCost(max_size);
sreducer.Allreduce(BeginPtr(summary_array), nbytes, summary_array.size());
// now we get the final result of sketch, setup the cut
this->wspace.cut.clear();
this->wspace.rptr.clear();
this->wspace.rptr.push_back(0);
for (size_t wid = 0; wid < this->qexpand.size(); ++wid) {
for (int fid = 0; fid < tree.param.num_feature; ++fid) {
const WXQSketch::Summary &a = summary_array[wid * tree.param.num_feature + fid];
for (size_t i = 1; i < a.size; ++i) {
bst_float cpt = a.data[i].value - rt_eps;
if (i == 1 || cpt > this->wspace.cut.back()) {
this->wspace.cut.push_back(cpt);
}
}
// push a value that is greater than anything
if (a.size != 0) {
bst_float cpt = a.data[a.size - 1].value;
// this must be bigger than last value in a scale
bst_float last = cpt + fabs(cpt) + rt_eps;
this->wspace.cut.push_back(last);
}
this->wspace.rptr.push_back(this->wspace.cut.size());
}
// reserve last value for global statistics
this->wspace.cut.push_back(0.0f);
this->wspace.rptr.push_back(this->wspace.cut.size());
}
utils::Assert(this->wspace.rptr.size() ==
(tree.param.num_feature + 1) * this->qexpand.size() + 1,
"cut space inconsistent");
}
private:
// summary array
std::vector<WXQSketch::SummaryContainer> summary_array;
// reducer for summary
rabit::SerializeReducer<WXQSketch::SummaryContainer> sreducer;
// local temp column data structure
std::vector<size_t> col_ptr;
// local storage of column data
std::vector<SparseBatch::Entry> col_data;
std::vector< std::vector<size_t> > thread_col_ptr;
// per node, per feature sketch
std::vector< utils::WQuantileSketch<bst_float, bst_float> > sketchs;
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_UPDATER_HISTMAKER_INL_HPP_