413 lines
14 KiB
Plaintext
413 lines
14 KiB
Plaintext
/*!
|
|
* Copyright 2017-2019 XGBoost contributors
|
|
*/
|
|
#include <thrust/device_vector.h>
|
|
#include <xgboost/base.h>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "../helpers.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "../../../src/data/sparse_page_source.h"
|
|
#include "../../../src/gbm/gbtree_model.h"
|
|
#include "../../../src/tree/updater_gpu_hist.cu"
|
|
#include "../../../src/tree/updater_gpu_common.cuh"
|
|
#include "../../../src/common/common.h"
|
|
#include "../../../src/tree/constraints.cuh"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
TEST(GpuHist, DeviceHistogram) {
|
|
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
|
|
dh::SaveCudaContext{
|
|
[&]() {
|
|
dh::safe_cuda(cudaSetDevice(0));
|
|
constexpr size_t kNBins = 128;
|
|
constexpr size_t kNNodes = 4;
|
|
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
|
|
DeviceHistogram<GradientPairPrecise, kStopGrowing> histogram;
|
|
histogram.Init(0, kNBins);
|
|
for (size_t i = 0; i < kNNodes; ++i) {
|
|
histogram.AllocateHistogram(i);
|
|
}
|
|
histogram.Reset();
|
|
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
|
|
|
|
// Use allocated memory but do not erase nidx_map.
|
|
for (size_t i = 0; i < kNNodes; ++i) {
|
|
histogram.AllocateHistogram(i);
|
|
}
|
|
for (size_t i = 0; i < kNNodes; ++i) {
|
|
ASSERT_TRUE(histogram.HistogramExists(i));
|
|
}
|
|
|
|
// Erase existing nidx_map.
|
|
for (size_t i = kNNodes; i < kNNodes * 2; ++i) {
|
|
histogram.AllocateHistogram(i);
|
|
}
|
|
for (size_t i = 0; i < kNNodes; ++i) {
|
|
ASSERT_FALSE(histogram.HistogramExists(i));
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
class HistogramCutsWrapper : public common::HistogramCuts {
|
|
public:
|
|
using SuperT = common::HistogramCuts;
|
|
void SetValues(std::vector<float> cuts) {
|
|
SuperT::cut_values_ = cuts;
|
|
}
|
|
void SetPtrs(std::vector<uint32_t> ptrs) {
|
|
SuperT::cut_ptrs_ = ptrs;
|
|
}
|
|
void SetMins(std::vector<float> mins) {
|
|
SuperT::min_vals_ = mins;
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
|
|
template <typename GradientSumT>
|
|
void BuildGidx(DeviceShard<GradientSumT>* shard, int n_rows, int n_cols,
|
|
bst_float sparsity=0) {
|
|
auto dmat = CreateDMatrix(n_rows, n_cols, sparsity, 3);
|
|
const SparsePage& batch = *(*dmat)->GetBatches<xgboost::SparsePage>().begin();
|
|
|
|
HistogramCutsWrapper cmat;
|
|
cmat.SetPtrs({0, 3, 6, 9, 12, 15, 18, 21, 24});
|
|
// 24 cut fields, 3 cut fields for each feature (column).
|
|
cmat.SetValues({0.30f, 0.67f, 1.64f,
|
|
0.32f, 0.77f, 1.95f,
|
|
0.29f, 0.70f, 1.80f,
|
|
0.32f, 0.75f, 1.85f,
|
|
0.18f, 0.59f, 1.69f,
|
|
0.25f, 0.74f, 2.00f,
|
|
0.26f, 0.74f, 1.98f,
|
|
0.26f, 0.71f, 1.83f});
|
|
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
|
|
|
|
auto is_dense = (*dmat)->Info().num_nonzero_ ==
|
|
(*dmat)->Info().num_row_ * (*dmat)->Info().num_col_;
|
|
size_t row_stride = 0;
|
|
const auto &offset_vec = batch.offset.ConstHostVector();
|
|
for (size_t i = 1; i < offset_vec.size(); ++i) {
|
|
row_stride = std::max(row_stride, offset_vec[i] - offset_vec[i-1]);
|
|
}
|
|
shard->InitCompressedData(cmat, row_stride, is_dense);
|
|
shard->CreateHistIndices(
|
|
batch, cmat, RowStateOnDevice(batch.Size(), batch.Size()), -1);
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
TEST(GpuHist, BuildGidxDense) {
|
|
int constexpr kNRows = 16, kNCols = 8;
|
|
tree::TrainParam param;
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"max_depth", "1"},
|
|
{"max_leaves", "0"},
|
|
};
|
|
param.Init(args);
|
|
DeviceShard<GradientPairPrecise> shard(0, kNRows, param, kNCols, kNCols);
|
|
BuildGidx(&shard, kNRows, kNCols);
|
|
|
|
std::vector<common::CompressedByteT> h_gidx_buffer(shard.gidx_buffer.size());
|
|
dh::CopyDeviceSpanToVector(&h_gidx_buffer, shard.gidx_buffer);
|
|
common::CompressedIterator<uint32_t> gidx(h_gidx_buffer.data(), 25);
|
|
|
|
ASSERT_EQ(shard.ellpack_matrix.row_stride, kNCols);
|
|
|
|
std::vector<uint32_t> solution = {
|
|
0, 3, 8, 9, 14, 17, 20, 21,
|
|
0, 4, 7, 10, 14, 16, 19, 22,
|
|
1, 3, 7, 11, 14, 15, 19, 21,
|
|
2, 3, 7, 9, 13, 16, 20, 22,
|
|
2, 3, 6, 9, 12, 16, 20, 21,
|
|
1, 5, 6, 10, 13, 16, 20, 21,
|
|
2, 5, 8, 9, 13, 17, 19, 22,
|
|
2, 4, 6, 10, 14, 17, 19, 21,
|
|
2, 5, 7, 9, 13, 16, 19, 22,
|
|
0, 3, 8, 10, 12, 16, 19, 22,
|
|
1, 3, 7, 10, 13, 16, 19, 21,
|
|
1, 3, 8, 10, 13, 17, 20, 22,
|
|
2, 4, 6, 9, 14, 15, 19, 22,
|
|
1, 4, 6, 9, 13, 16, 19, 21,
|
|
2, 4, 8, 10, 14, 15, 19, 22,
|
|
1, 4, 7, 10, 14, 16, 19, 21,
|
|
};
|
|
for (size_t i = 0; i < kNRows * kNCols; ++i) {
|
|
ASSERT_EQ(solution[i], gidx[i]);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, BuildGidxSparse) {
|
|
int constexpr kNRows = 16, kNCols = 8;
|
|
TrainParam param;
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"max_depth", "1"},
|
|
{"max_leaves", "0"},
|
|
};
|
|
param.Init(args);
|
|
|
|
DeviceShard<GradientPairPrecise> shard(0, kNRows, param, kNCols, kNCols);
|
|
BuildGidx(&shard, kNRows, kNCols, 0.9f);
|
|
|
|
std::vector<common::CompressedByteT> h_gidx_buffer(shard.gidx_buffer.size());
|
|
dh::CopyDeviceSpanToVector(&h_gidx_buffer, shard.gidx_buffer);
|
|
common::CompressedIterator<uint32_t> gidx(h_gidx_buffer.data(), 25);
|
|
|
|
ASSERT_LE(shard.ellpack_matrix.row_stride, 3);
|
|
|
|
// row_stride = 3, 16 rows, 48 entries for ELLPack
|
|
std::vector<uint32_t> solution = {
|
|
15, 24, 24, 0, 24, 24, 24, 24, 24, 24, 24, 24, 20, 24, 24, 24,
|
|
24, 24, 24, 24, 24, 5, 24, 24, 0, 16, 24, 15, 24, 24, 24, 24,
|
|
24, 7, 14, 16, 4, 24, 24, 24, 24, 24, 9, 24, 24, 1, 24, 24
|
|
};
|
|
for (size_t i = 0; i < kNRows * shard.ellpack_matrix.row_stride; ++i) {
|
|
ASSERT_EQ(solution[i], gidx[i]);
|
|
}
|
|
}
|
|
|
|
std::vector<GradientPairPrecise> GetHostHistGpair() {
|
|
// 24 bins, 3 bins for each feature (column).
|
|
std::vector<GradientPairPrecise> hist_gpair = {
|
|
{0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f},
|
|
{2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f},
|
|
{1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f},
|
|
{2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f},
|
|
{1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f},
|
|
{1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f},
|
|
{0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f},
|
|
{2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f}
|
|
};
|
|
return hist_gpair;
|
|
}
|
|
|
|
template <typename GradientSumT>
|
|
void TestBuildHist(bool use_shared_memory_histograms) {
|
|
int const kNRows = 16, kNCols = 8;
|
|
|
|
TrainParam param;
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"max_depth", "6"},
|
|
{"max_leaves", "0"},
|
|
};
|
|
param.Init(args);
|
|
DeviceShard<GradientSumT> shard(0, kNRows, param, kNCols, kNCols);
|
|
BuildGidx(&shard, kNRows, kNCols);
|
|
|
|
xgboost::SimpleLCG gen;
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
|
|
std::vector<GradientPair> h_gpair(kNRows);
|
|
for (auto &gpair : h_gpair) {
|
|
bst_float grad = dist(&gen);
|
|
bst_float hess = dist(&gen);
|
|
gpair = GradientPair(grad, hess);
|
|
}
|
|
|
|
thrust::host_vector<common::CompressedByteT> h_gidx_buffer (
|
|
shard.gidx_buffer.size());
|
|
|
|
common::CompressedByteT* d_gidx_buffer_ptr = shard.gidx_buffer.data();
|
|
dh::safe_cuda(cudaMemcpy(h_gidx_buffer.data(), d_gidx_buffer_ptr,
|
|
sizeof(common::CompressedByteT) * shard.gidx_buffer.size(),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
shard.row_partitioner.reset(new RowPartitioner(0, kNRows));
|
|
shard.hist.AllocateHistogram(0);
|
|
dh::CopyVectorToDeviceSpan(shard.gpair, h_gpair);
|
|
|
|
shard.use_shared_memory_histograms = use_shared_memory_histograms;
|
|
shard.BuildHist(0);
|
|
DeviceHistogram<GradientSumT> d_hist = shard.hist;
|
|
|
|
auto node_histogram = d_hist.GetNodeHistogram(0);
|
|
// d_hist.data stored in float, not gradient pair
|
|
thrust::host_vector<GradientSumT> h_result (d_hist.Data().size() / 2);
|
|
size_t data_size =
|
|
sizeof(GradientSumT) /
|
|
(sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT));
|
|
data_size *= d_hist.Data().size();
|
|
dh::safe_cuda(cudaMemcpy(h_result.data(), node_histogram.data(), data_size,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
std::vector<GradientPairPrecise> solution = GetHostHistGpair();
|
|
std::cout << std::fixed;
|
|
for (size_t i = 0; i < h_result.size(); ++i) {
|
|
EXPECT_NEAR(h_result[i].GetGrad(), solution[i].GetGrad(), 0.01f);
|
|
EXPECT_NEAR(h_result[i].GetHess(), solution[i].GetHess(), 0.01f);
|
|
}
|
|
}
|
|
|
|
TEST(GpuHist, BuildHistGlobalMem) {
|
|
TestBuildHist<GradientPairPrecise>(false);
|
|
TestBuildHist<GradientPair>(false);
|
|
}
|
|
|
|
TEST(GpuHist, BuildHistSharedMem) {
|
|
TestBuildHist<GradientPairPrecise>(true);
|
|
TestBuildHist<GradientPair>(true);
|
|
}
|
|
|
|
HistogramCutsWrapper GetHostCutMatrix () {
|
|
HistogramCutsWrapper cmat;
|
|
cmat.SetPtrs({0, 3, 6, 9, 12, 15, 18, 21, 24});
|
|
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
|
|
// 24 cut fields, 3 cut fields for each feature (column).
|
|
// Each row of the cut represents the cuts for a data column.
|
|
cmat.SetValues({0.30f, 0.67f, 1.64f,
|
|
0.32f, 0.77f, 1.95f,
|
|
0.29f, 0.70f, 1.80f,
|
|
0.32f, 0.75f, 1.85f,
|
|
0.18f, 0.59f, 1.69f,
|
|
0.25f, 0.74f, 2.00f,
|
|
0.26f, 0.74f, 1.98f,
|
|
0.26f, 0.71f, 1.83f});
|
|
return cmat;
|
|
}
|
|
|
|
// TODO(trivialfis): This test is over simplified.
|
|
TEST(GpuHist, EvaluateSplits) {
|
|
constexpr int kNRows = 16;
|
|
constexpr int kNCols = 8;
|
|
|
|
TrainParam param;
|
|
|
|
std::vector<std::pair<std::string, std::string>> args {
|
|
{"max_depth", "1"},
|
|
{"max_leaves", "0"},
|
|
|
|
// Disable all other parameters.
|
|
{"colsample_bynode", "1"},
|
|
{"colsample_bylevel", "1"},
|
|
{"colsample_bytree", "1"},
|
|
{"min_child_weight", "0.01"},
|
|
{"reg_alpha", "0"},
|
|
{"reg_lambda", "0"},
|
|
{"max_delta_step", "0"}
|
|
};
|
|
param.Init(args);
|
|
for (size_t i = 0; i < kNCols; ++i) {
|
|
param.monotone_constraints.emplace_back(0);
|
|
}
|
|
|
|
int max_bins = 4;
|
|
|
|
// Initialize DeviceShard
|
|
std::unique_ptr<DeviceShard<GradientPairPrecise>> shard{
|
|
new DeviceShard<GradientPairPrecise>(0, kNRows, param, kNCols, kNCols)};
|
|
// Initialize DeviceShard::node_sum_gradients
|
|
shard->node_sum_gradients = {{6.4f, 12.8f}};
|
|
|
|
// Initialize DeviceShard::cut
|
|
auto cmat = GetHostCutMatrix();
|
|
|
|
// Copy cut matrix to device.
|
|
shard->ba.Allocate(0,
|
|
&(shard->feature_segments), cmat.Ptrs().size(),
|
|
&(shard->min_fvalue), cmat.MinValues().size(),
|
|
&(shard->gidx_fvalue_map), 24,
|
|
&(shard->monotone_constraints), kNCols);
|
|
dh::CopyVectorToDeviceSpan(shard->feature_segments, cmat.Ptrs());
|
|
dh::CopyVectorToDeviceSpan(shard->gidx_fvalue_map, cmat.Values());
|
|
dh::CopyVectorToDeviceSpan(shard->monotone_constraints,
|
|
param.monotone_constraints);
|
|
shard->ellpack_matrix.feature_segments = shard->feature_segments;
|
|
shard->ellpack_matrix.gidx_fvalue_map = shard->gidx_fvalue_map;
|
|
dh::CopyVectorToDeviceSpan(shard->min_fvalue, cmat.MinValues());
|
|
shard->ellpack_matrix.min_fvalue = shard->min_fvalue;
|
|
|
|
// Initialize DeviceShard::hist
|
|
shard->hist.Init(0, (max_bins - 1) * kNCols);
|
|
shard->hist.AllocateHistogram(0);
|
|
// Each row of hist_gpair represents gpairs for one feature.
|
|
// Each entry represents a bin.
|
|
std::vector<GradientPairPrecise> hist_gpair = GetHostHistGpair();
|
|
std::vector<bst_float> hist;
|
|
for (auto pair : hist_gpair) {
|
|
hist.push_back(pair.GetGrad());
|
|
hist.push_back(pair.GetHess());
|
|
}
|
|
|
|
ASSERT_EQ(shard->hist.Data().size(), hist.size());
|
|
thrust::copy(hist.begin(), hist.end(),
|
|
shard->hist.Data().begin());
|
|
|
|
shard->column_sampler.Init(kNCols,
|
|
param.colsample_bynode,
|
|
param.colsample_bylevel,
|
|
param.colsample_bytree,
|
|
false);
|
|
|
|
RegTree tree;
|
|
MetaInfo info;
|
|
info.num_row_ = kNRows;
|
|
info.num_col_ = kNCols;
|
|
|
|
shard->node_value_constraints.resize(1);
|
|
shard->node_value_constraints[0].lower_bound = -1.0;
|
|
shard->node_value_constraints[0].upper_bound = 1.0;
|
|
|
|
std::vector<DeviceSplitCandidate> res =
|
|
shard->EvaluateSplits({ 0,0 }, tree, kNCols);
|
|
|
|
ASSERT_EQ(res[0].findex, 7);
|
|
ASSERT_EQ(res[1].findex, 7);
|
|
ASSERT_NEAR(res[0].fvalue, 0.26, xgboost::kRtEps);
|
|
ASSERT_NEAR(res[1].fvalue, 0.26, xgboost::kRtEps);
|
|
}
|
|
|
|
void TestHistogramIndexImpl() {
|
|
// Test if the compressed histogram index matches when using a sparse
|
|
// dmatrix with and without using external memory
|
|
|
|
int constexpr kNRows = 1000, kNCols = 10;
|
|
|
|
// Build 2 matrices and build a histogram maker with that
|
|
tree::GPUHistMakerSpecialised<GradientPairPrecise> hist_maker, hist_maker_ext;
|
|
std::unique_ptr<DMatrix> hist_maker_dmat(
|
|
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 0, true));
|
|
std::unique_ptr<DMatrix> hist_maker_ext_dmat(
|
|
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 128UL, true));
|
|
|
|
std::vector<std::pair<std::string, std::string>> training_params = {
|
|
{"max_depth", "10"},
|
|
{"max_leaves", "0"}
|
|
};
|
|
|
|
GenericParameter generic_param(CreateEmptyGenericParam(0));
|
|
hist_maker.Configure(training_params, &generic_param);
|
|
|
|
hist_maker.InitDataOnce(hist_maker_dmat.get());
|
|
hist_maker_ext.Configure(training_params, &generic_param);
|
|
hist_maker_ext.InitDataOnce(hist_maker_ext_dmat.get());
|
|
|
|
// Extract the device shard from the histogram makers and from that its compressed
|
|
// histogram index
|
|
const auto &dev_shard = hist_maker.shard_;
|
|
std::vector<common::CompressedByteT> h_gidx_buffer(dev_shard->gidx_buffer.size());
|
|
dh::CopyDeviceSpanToVector(&h_gidx_buffer, dev_shard->gidx_buffer);
|
|
|
|
const auto &dev_shard_ext = hist_maker_ext.shard_;
|
|
std::vector<common::CompressedByteT> h_gidx_buffer_ext(dev_shard_ext->gidx_buffer.size());
|
|
dh::CopyDeviceSpanToVector(&h_gidx_buffer_ext, dev_shard_ext->gidx_buffer);
|
|
|
|
ASSERT_EQ(dev_shard->n_bins, dev_shard_ext->n_bins);
|
|
ASSERT_EQ(dev_shard->gidx_buffer.size(), dev_shard_ext->gidx_buffer.size());
|
|
|
|
ASSERT_EQ(h_gidx_buffer, h_gidx_buffer_ext);
|
|
}
|
|
|
|
TEST(GpuHist, TestHistogramIndex) {
|
|
TestHistogramIndexImpl();
|
|
}
|
|
|
|
} // namespace tree
|
|
} // namespace xgboost
|