* Error on get_split_value_histogram when feature is categorical * Add a category column to output dataframe
159 lines
5.9 KiB
Python
159 lines
5.9 KiB
Python
import numpy as np
|
|
import sys
|
|
import gc
|
|
import pytest
|
|
import xgboost as xgb
|
|
from hypothesis import given, strategies, assume, settings, note
|
|
|
|
sys.path.append("tests/python")
|
|
import testing as tm
|
|
|
|
parameter_strategy = strategies.fixed_dictionaries({
|
|
'max_depth': strategies.integers(0, 11),
|
|
'max_leaves': strategies.integers(0, 256),
|
|
'max_bin': strategies.integers(2, 1024),
|
|
'grow_policy': strategies.sampled_from(['lossguide', 'depthwise']),
|
|
'single_precision_histogram': strategies.booleans(),
|
|
'min_child_weight': strategies.floats(0.5, 2.0),
|
|
'seed': strategies.integers(0, 10),
|
|
# We cannot enable subsampling as the training loss can increase
|
|
# 'subsample': strategies.floats(0.5, 1.0),
|
|
'colsample_bytree': strategies.floats(0.5, 1.0),
|
|
'colsample_bylevel': strategies.floats(0.5, 1.0),
|
|
}).filter(lambda x: (x['max_depth'] > 0 or x['max_leaves'] > 0) and (
|
|
x['max_depth'] > 0 or x['grow_policy'] == 'lossguide'))
|
|
|
|
|
|
def train_result(param, dmat, num_rounds):
|
|
result = {}
|
|
xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False,
|
|
evals_result=result)
|
|
return result
|
|
|
|
|
|
class TestGPUUpdaters:
|
|
@given(parameter_strategy, strategies.integers(1, 20), tm.dataset_strategy)
|
|
@settings(deadline=None)
|
|
def test_gpu_hist(self, param, num_rounds, dataset):
|
|
param["tree_method"] = "gpu_hist"
|
|
param = dataset.set_params(param)
|
|
result = train_result(param, dataset.get_dmat(), num_rounds)
|
|
note(result)
|
|
assert tm.non_increasing(result["train"][dataset.metric])
|
|
|
|
def run_categorical_basic(self, rows, cols, rounds, cats):
|
|
onehot, label = tm.make_categorical(rows, cols, cats, True)
|
|
cat, _ = tm.make_categorical(rows, cols, cats, False)
|
|
|
|
by_etl_results = {}
|
|
by_builtin_results = {}
|
|
|
|
parameters = {"tree_method": "gpu_hist", "predictor": "gpu_predictor"}
|
|
|
|
m = xgb.DMatrix(onehot, label, enable_categorical=False)
|
|
xgb.train(
|
|
parameters,
|
|
m,
|
|
num_boost_round=rounds,
|
|
evals=[(m, "Train")],
|
|
evals_result=by_etl_results,
|
|
)
|
|
|
|
m = xgb.DMatrix(cat, label, enable_categorical=True)
|
|
xgb.train(
|
|
parameters,
|
|
m,
|
|
num_boost_round=rounds,
|
|
evals=[(m, "Train")],
|
|
evals_result=by_builtin_results,
|
|
)
|
|
|
|
# There are guidelines on how to specify tolerance based on considering output as
|
|
# random variables. But in here the tree construction is extremely sensitive to
|
|
# floating point errors. An 1e-5 error in a histogram bin can lead to an entirely
|
|
# different tree. So even though the test is quite lenient, hypothesis can still
|
|
# pick up falsifying examples from time to time.
|
|
np.testing.assert_allclose(
|
|
np.array(by_etl_results["Train"]["rmse"]),
|
|
np.array(by_builtin_results["Train"]["rmse"]),
|
|
rtol=1e-3,
|
|
)
|
|
assert tm.non_increasing(by_builtin_results["Train"]["rmse"])
|
|
|
|
@given(strategies.integers(10, 400), strategies.integers(3, 8),
|
|
strategies.integers(1, 2), strategies.integers(4, 7))
|
|
@settings(deadline=None)
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_categorical(self, rows, cols, rounds, cats):
|
|
self.run_categorical_basic(rows, cols, rounds, cats)
|
|
|
|
def test_categorical_32_cat(self):
|
|
'''32 hits the bound of integer bitset, so special test'''
|
|
rows = 1000
|
|
cols = 10
|
|
cats = 32
|
|
rounds = 4
|
|
self.run_categorical_basic(rows, cols, rounds, cats)
|
|
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@given(parameter_strategy, strategies.integers(1, 20),
|
|
tm.dataset_strategy)
|
|
@settings(deadline=None)
|
|
def test_gpu_hist_device_dmatrix(self, param, num_rounds, dataset):
|
|
# We cannot handle empty dataset yet
|
|
assume(len(dataset.y) > 0)
|
|
param['tree_method'] = 'gpu_hist'
|
|
param = dataset.set_params(param)
|
|
result = train_result(param, dataset.get_device_dmat(), num_rounds)
|
|
note(result)
|
|
assert tm.non_increasing(result['train'][dataset.metric])
|
|
|
|
@given(parameter_strategy, strategies.integers(1, 20),
|
|
tm.dataset_strategy)
|
|
@settings(deadline=None)
|
|
def test_external_memory(self, param, num_rounds, dataset):
|
|
pytest.xfail(reason='TestGPUUpdaters::test_external_memory is flaky')
|
|
# We cannot handle empty dataset yet
|
|
assume(len(dataset.y) > 0)
|
|
param['tree_method'] = 'gpu_hist'
|
|
param = dataset.set_params(param)
|
|
m = dataset.get_external_dmat()
|
|
external_result = train_result(param, m, num_rounds)
|
|
del m
|
|
gc.collect()
|
|
assert tm.non_increasing(external_result['train'][dataset.metric])
|
|
|
|
def test_empty_dmatrix_prediction(self):
|
|
# FIXME(trivialfis): This should be done with all updaters
|
|
kRows = 0
|
|
kCols = 100
|
|
|
|
X = np.empty((kRows, kCols))
|
|
y = np.empty((kRows))
|
|
|
|
dtrain = xgb.DMatrix(X, y)
|
|
|
|
bst = xgb.train({'verbosity': 2,
|
|
'tree_method': 'gpu_hist',
|
|
'gpu_id': 0},
|
|
dtrain,
|
|
verbose_eval=True,
|
|
num_boost_round=6,
|
|
evals=[(dtrain, 'Train')])
|
|
|
|
kRows = 100
|
|
X = np.random.randn(kRows, kCols)
|
|
|
|
dtest = xgb.DMatrix(X)
|
|
predictions = bst.predict(dtest)
|
|
np.testing.assert_allclose(predictions, 0.5, 1e-6)
|
|
|
|
@pytest.mark.mgpu
|
|
@given(tm.dataset_strategy, strategies.integers(0, 10))
|
|
@settings(deadline=None, max_examples=10)
|
|
def test_specified_gpu_id_gpu_update(self, dataset, gpu_id):
|
|
param = {'tree_method': 'gpu_hist', 'gpu_id': gpu_id}
|
|
param = dataset.set_params(param)
|
|
result = train_result(param, dataset.get_dmat(), 10)
|
|
assert tm.non_increasing(result['train'][dataset.metric])
|