xgboost/tests/cpp/tree/test_approx.cc
Jiaming Yuan a5a58102e5
Revamp the rabit implementation. (#10112)
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
2024-05-20 11:56:23 +08:00

154 lines
5.7 KiB
C++

/**
* Copyright 2021-2024, XGBoost contributors.
*/
#include <gtest/gtest.h>
#include "../../../src/common/numeric.h"
#include "../../../src/tree/common_row_partitioner.h"
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h"
#include "test_partitioner.h"
namespace xgboost::tree {
namespace {
std::vector<float> GenerateHess(size_t n_samples) {
auto grad = GenerateRandomGradients(n_samples);
std::vector<float> hess(grad.Size());
std::transform(grad.HostVector().cbegin(), grad.HostVector().cend(), hess.begin(),
[](auto gpair) { return gpair.GetHess(); });
return hess;
}
} // anonymous namespace
TEST(Approx, Partitioner) {
size_t n_samples = 1024, n_features = 1, base_rowid = 0;
Context ctx;
ctx.InitAllowUnknown(Args{});
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
ASSERT_EQ(partitioner.base_rowid, base_rowid);
ASSERT_EQ(partitioner.Size(), 1);
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
auto hess = GenerateHess(n_samples);
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>(&ctx, {64, hess, true})) {
bst_feature_t const split_ind = 0;
{
auto min_value = page.cut.MinValues()[split_ind];
RegTree tree;
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
GetSplit(&tree, min_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
auto ptr = page.cut.Ptrs()[split_ind + 1];
float split_value = page.cut.Values().at(ptr / 2);
RegTree tree;
GetSplit(&tree, split_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
auto left_nidx = tree[RegTree::kRoot].LeftChild();
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = page.cut.Values().at(page.index[*it]);
ASSERT_LE(value, split_value);
}
auto right_nidx = tree[RegTree::kRoot].RightChild();
elem = partitioner[right_nidx];
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = page.cut.Values().at(page.index[*it]);
ASSERT_GT(value, split_value) << *it;
}
}
}
}
namespace {
void TestColumnSplitPartitioner(size_t n_samples, size_t base_rowid, std::shared_ptr<DMatrix> Xy,
std::vector<float>* hess, float min_value, float mid_value,
CommonRowPartitioner const& expected_mid_partitioner) {
auto dmat =
std::unique_ptr<DMatrix>{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
Context ctx;
ctx.InitAllowUnknown(Args{});
for (auto const& page : dmat->GetBatches<GHistIndexMatrix>(&ctx, {64, *hess, true})) {
{
RegTree tree;
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
GetSplit(&tree, min_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
RegTree tree;
GetSplit(&tree, mid_value, &candidates);
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
auto left_nidx = tree[RegTree::kRoot].LeftChild();
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
auto expected_elem = expected_mid_partitioner[left_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin, eit = expected_elem.begin; it != elem.end; ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
auto right_nidx = tree[RegTree::kRoot].RightChild();
elem = partitioner[right_nidx];
expected_elem = expected_mid_partitioner[right_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin, eit = expected_elem.begin; it != elem.end; ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
}
}
}
} // anonymous namespace
TEST(Approx, PartitionerColSplit) {
size_t n_samples = 1024, n_features = 16, base_rowid = 0;
auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
auto hess = GenerateHess(n_samples);
std::vector<CPUExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
float min_value, mid_value;
Context ctx;
ctx.InitAllowUnknown(Args{});
CommonRowPartitioner mid_partitioner{&ctx, n_samples, base_rowid, false};
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>(&ctx, {64, hess, true})) {
bst_feature_t const split_ind = 0;
min_value = page.cut.MinValues()[split_ind];
auto ptr = page.cut.Ptrs()[split_ind + 1];
mid_value = page.cut.Values().at(ptr / 2);
RegTree tree;
GetSplit(&tree, mid_value, &candidates);
mid_partitioner.UpdatePosition(&ctx, page, candidates, &tree);
}
auto constexpr kWorkers = 4;
collective::TestDistributedGlobal(kWorkers, [&] {
TestColumnSplitPartitioner(n_samples, base_rowid, Xy, &hess, min_value, mid_value,
mid_partitioner);
});
}
} // namespace xgboost::tree