Rong Ou a2686543a9
Common interface for collective communication (#8057)
* implement broadcast for federated communicator

* implement allreduce

* add communicator factory

* add device adapter

* add device communicator to factory

* add rabit communicator

* add rabit communicator to the factory

* add nccl device communicator

* add synchronize to device communicator

* add back print and getprocessorname

* add python wrapper and c api

* clean up types

* fix non-gpu build

* try to fix ci

* fix std::size_t

* portable string compare ignore case

* c style size_t

* fix lint errors

* cross platform setenv

* fix memory leak

* fix lint errors

* address review feedback

* add python test for rabit communicator

* fix failing gtest

* use json to configure communicators

* fix lint error

* get rid of factories

* fix cpu build

* fix include

* fix python import

* don't export collective.py yet

* skip collective communicator pytest on windows

* add review feedback

* update documentation

* remove mpi communicator type

* fix tests

* shutdown the communicator separately

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2022-09-12 15:21:12 -07:00
2022-08-23 15:08:30 +08:00
2022-06-22 21:29:10 +08:00
2021-10-11 21:39:50 +08:00
2021-11-02 13:34:38 +08:00
2020-04-05 04:42:29 +08:00
2017-12-01 02:58:13 -08:00
2022-06-06 20:18:32 +08:00
2021-10-07 16:07:34 +08:00
2022-05-14 15:38:18 -07:00
2021-08-17 03:37:53 +08:00

eXtreme Gradient Boosting

Build Status Build Status XGBoost-CI Documentation Status GitHub license CRAN Status Badge PyPI version Conda version Optuna Twitter

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond billions of examples.

License

© Contributors, 2021. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page.

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%