223 lines
7.5 KiB
R
223 lines
7.5 KiB
R
# depends on matrix
|
|
.onLoad <- function(libname, pkgname) {
|
|
library.dynam("xgboost", pkgname, libname);
|
|
}
|
|
.onUnload <- function(libpath) {
|
|
library.dynam.unload("xgboost", libpath);
|
|
}
|
|
|
|
# constructing DMatrix
|
|
xgb.DMatrix <- function(data, info=list(), missing=0.0) {
|
|
if (typeof(data) == "character") {
|
|
handle <- .Call("XGDMatrixCreateFromFile_R", data, as.integer(FALSE), PACKAGE="xgboost")
|
|
} else if(is.matrix(data)) {
|
|
handle <- .Call("XGDMatrixCreateFromMat_R", data, missing, PACKAGE="xgboost")
|
|
} else if(class(data) == "dgCMatrix") {
|
|
handle <- .Call("XGDMatrixCreateFromCSC_R", data@p, data@i, data@x, PACKAGE="xgboost")
|
|
} else {
|
|
stop(paste("xgb.DMatrix: does not support to construct from ", typeof(data)))
|
|
}
|
|
dmat <- structure(handle, class="xgb.DMatrix")
|
|
if (length(info) != 0) {
|
|
for (i in 1:length(info)) {
|
|
p <- info[i]
|
|
xgb.setinfo(dmat, names(p), p[[1]])
|
|
}
|
|
}
|
|
return(dmat)
|
|
}
|
|
# get information from dmatrix
|
|
xgb.getinfo <- function(dmat, name) {
|
|
if (typeof(name) != "character") {
|
|
stop("xgb.getinfo: name must be character")
|
|
}
|
|
if (class(dmat) != "xgb.DMatrix") {
|
|
stop("xgb.setinfo: first argument dtrain must be xgb.DMatrix");
|
|
}
|
|
if (name != "label" &&
|
|
name != "weight" &&
|
|
name != "base_margin" ) {
|
|
stop(paste("xgb.getinfo: unknown info name", name))
|
|
}
|
|
ret <- .Call("XGDMatrixGetInfo_R", dmat, name, PACKAGE="xgboost")
|
|
return(ret)
|
|
}
|
|
# set information into dmatrix, this mutate dmatrix
|
|
xgb.setinfo <- function(dmat, name, info) {
|
|
if (class(dmat) != "xgb.DMatrix") {
|
|
stop("xgb.setinfo: first argument dtrain must be xgb.DMatrix");
|
|
}
|
|
if (name == "label") {
|
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info), PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
if (name == "weight") {
|
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info), PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
if (name == "base_margin") {
|
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info), PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
if (name == "group") {
|
|
.Call("XGDMatrixSetInfo_R", dmat, name, as.integer(info), PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
stop(pase("xgb.setinfo: unknown info name", name))
|
|
return(FALSE)
|
|
}
|
|
# construct a Booster from cachelist
|
|
xgb.Booster <- function(params = list(), cachelist = list(), modelfile = NULL) {
|
|
if (typeof(cachelist) != "list") {
|
|
stop("xgb.Booster: only accepts list of DMatrix as cachelist")
|
|
}
|
|
for (dm in cachelist) {
|
|
if (class(dm) != "xgb.DMatrix") {
|
|
stop("xgb.Booster: only accepts list of DMatrix as cachelist")
|
|
}
|
|
}
|
|
handle <- .Call("XGBoosterCreate_R", cachelist, PACKAGE="xgboost")
|
|
.Call("XGBoosterSetParam_R", handle, "seed", "0", PACKAGE="xgboost")
|
|
if (length(params) != 0) {
|
|
for (i in 1:length(params)) {
|
|
p <- params[i]
|
|
.Call("XGBoosterSetParam_R", handle, names(p), as.character(p), PACKAGE="xgboost")
|
|
}
|
|
}
|
|
if (!is.null(modelfile)) {
|
|
if (typeof(modelfile) != "character"){
|
|
stop("xgb.Booster: modelfile must be character");
|
|
}
|
|
.Call("XGBoosterLoadModel_R", handle, modelfile, PACKAGE="xgboost")
|
|
}
|
|
return(structure(handle, class="xgb.Booster"))
|
|
}
|
|
# train a model using given parameters
|
|
xgb.train <- function(params, dtrain, nrounds=10, watchlist=list(), obj=NULL, feval=NULL) {
|
|
if (typeof(params) != "list") {
|
|
stop("xgb.train: first argument params must be list");
|
|
}
|
|
if (class(dtrain) != "xgb.DMatrix") {
|
|
stop("xgb.train: second argument dtrain must be xgb.DMatrix");
|
|
}
|
|
bst <- xgb.Booster(params, append(watchlist,dtrain))
|
|
for (i in 1:nrounds) {
|
|
if (is.null(obj)) {
|
|
succ <- xgb.iter.update(bst, dtrain, i-1)
|
|
} else {
|
|
pred <- xgb.predict(bst, dtrain)
|
|
gpair <- obj(pred, dtrain)
|
|
succ <- xgb.iter.boost(bst, dtrain, gpair)
|
|
}
|
|
if (length(watchlist) != 0) {
|
|
if (is.null(feval)) {
|
|
msg <- xgb.iter.eval(bst, watchlist, i-1)
|
|
cat(msg); cat("\n")
|
|
} else {
|
|
cat("["); cat(i); cat("]");
|
|
for (j in 1:length(watchlist)) {
|
|
w <- watchlist[j]
|
|
if (length(names(w)) == 0) {
|
|
stop("xgb.eval: name tag must be presented for every elements in watchlist")
|
|
}
|
|
ret <- feval(xgb.predict(bst, w[[1]]), w[[1]])
|
|
cat("\t"); cat(names(w)); cat("-"); cat(ret$metric);
|
|
cat(":"); cat(ret$value)
|
|
}
|
|
cat("\n")
|
|
}
|
|
}
|
|
}
|
|
return(bst)
|
|
}
|
|
# save model or DMatrix to file
|
|
xgb.save <- function(handle, fname) {
|
|
if (typeof(fname) != "character") {
|
|
stop("xgb.save: fname must be character")
|
|
}
|
|
if (class(handle) == "xgb.Booster") {
|
|
.Call("XGBoosterSaveModel_R", handle, fname, PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
if (class(handle) == "xgb.DMatrix") {
|
|
.Call("XGDMatrixSaveBinary_R", handle, fname, as.integer(FALSE), PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
stop("xgb.save: the input must be either xgb.DMatrix or xgb.Booster")
|
|
return(FALSE)
|
|
}
|
|
# predict
|
|
xgb.predict <- function(booster, dmat, outputmargin = FALSE) {
|
|
if (class(booster) != "xgb.Booster") {
|
|
stop("xgb.predict: first argument must be type xgb.Booster")
|
|
}
|
|
if (class(dmat) != "xgb.DMatrix") {
|
|
stop("xgb.predict: second argument must be type xgb.DMatrix")
|
|
}
|
|
ret <- .Call("XGBoosterPredict_R", booster, dmat, as.integer(outputmargin), PACKAGE="xgboost")
|
|
return(ret)
|
|
}
|
|
# dump model
|
|
xgb.dump <- function(booster, fname, fmap = "") {
|
|
if (class(booster) != "xgb.Booster") {
|
|
stop("xgb.dump: first argument must be type xgb.Booster")
|
|
}
|
|
if (typeof(fname) != "character"){
|
|
stop("xgb.dump: second argument must be type character")
|
|
}
|
|
.Call("XGBoosterDumpModel_R", booster, fname, fmap, PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
##--------------------------------------
|
|
# the following are low level iteratively function, not needed
|
|
# if you do not want to use them
|
|
#---------------------------------------
|
|
# iteratively update booster with dtrain
|
|
xgb.iter.update <- function(booster, dtrain, iter) {
|
|
if (class(booster) != "xgb.Booster") {
|
|
stop("xgb.iter.update: first argument must be type xgb.Booster")
|
|
}
|
|
if (class(dtrain) != "xgb.DMatrix") {
|
|
stop("xgb.iter.update: second argument must be type xgb.DMatrix")
|
|
}
|
|
.Call("XGBoosterUpdateOneIter_R", booster, as.integer(iter), dtrain, PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
# iteratively update booster with customized statistics
|
|
xgb.iter.boost <- function(booster, dtrain, gpair) {
|
|
if (class(booster) != "xgb.Booster") {
|
|
stop("xgb.iter.update: first argument must be type xgb.Booster")
|
|
}
|
|
if (class(dtrain) != "xgb.DMatrix") {
|
|
stop("xgb.iter.update: second argument must be type xgb.DMatrix")
|
|
}
|
|
.Call("XGBoosterBoostOneIter_R", booster, dtrain, gpair$grad, gpair$hess, PACKAGE="xgboost")
|
|
return(TRUE)
|
|
}
|
|
# iteratively evaluate one iteration
|
|
xgb.iter.eval <- function(booster, watchlist, iter) {
|
|
if (class(booster) != "xgb.Booster") {
|
|
stop("xgb.eval: first argument must be type xgb.Booster")
|
|
}
|
|
if (typeof(watchlist) != "list") {
|
|
stop("xgb.eval: only accepts list of DMatrix as watchlist")
|
|
}
|
|
for (w in watchlist) {
|
|
if (class(w) != "xgb.DMatrix") {
|
|
stop("xgb.eval: watch list can only contain xgb.DMatrix")
|
|
}
|
|
}
|
|
evnames <- list()
|
|
if (length(watchlist) != 0) {
|
|
for (i in 1:length(watchlist)) {
|
|
w <- watchlist[i]
|
|
if (length(names(w)) == 0) {
|
|
stop("xgb.eval: name tag must be presented for every elements in watchlist")
|
|
}
|
|
evnames <- append(evnames, names(w))
|
|
}
|
|
}
|
|
msg <- .Call("XGBoosterEvalOneIter_R", booster, as.integer(iter), watchlist, evnames, PACKAGE="xgboost")
|
|
return(msg)
|
|
}
|