xgboost/src/predictor/gpu_predictor.cu
Andrew V. Adinetz a1b48afa41 Added back UpdatePredictionCache() in updater_gpu_hist.cu. (#3120)
* Added back UpdatePredictionCache() in updater_gpu_hist.cu.

- it had been there before, but wasn't ported to the new version
  of updater_gpu_hist.cu
2018-03-09 15:06:45 +13:00

475 lines
17 KiB
Plaintext

/*!
* Copyright by Contributors 2017
*/
#include <dmlc/parameter.h>
#include <thrust/copy.h>
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <thrust/fill.h>
#include <xgboost/data.h>
#include <xgboost/predictor.h>
#include <xgboost/tree_model.h>
#include <xgboost/tree_updater.h>
#include <memory>
#include "../common/device_helpers.cuh"
#include "../common/host_device_vector.h"
namespace xgboost {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(gpu_predictor);
/*! \brief prediction parameters */
struct GPUPredictionParam : public dmlc::Parameter<GPUPredictionParam> {
int gpu_id;
int n_gpus;
bool silent;
// declare parameters
DMLC_DECLARE_PARAMETER(GPUPredictionParam) {
DMLC_DECLARE_FIELD(gpu_id).set_default(0).describe(
"Device ordinal for GPU prediction.");
DMLC_DECLARE_FIELD(n_gpus).set_default(1).describe(
"Number of devices to use for prediction (NOT IMPLEMENTED).");
DMLC_DECLARE_FIELD(silent).set_default(false).describe(
"Do not print information during trainig.");
}
};
DMLC_REGISTER_PARAMETER(GPUPredictionParam);
template <typename iter_t>
void increment_offset(iter_t begin_itr, iter_t end_itr, size_t amount) {
thrust::transform(begin_itr, end_itr, begin_itr,
[=] __device__(size_t elem) { return elem + amount; });
}
/**
* \struct DeviceMatrix
*
* \brief A csr representation of the input matrix allocated on the device.
*/
struct DeviceMatrix {
DMatrix* p_mat; // Pointer to the original matrix on the host
dh::bulk_allocator<dh::memory_type::DEVICE> ba;
dh::dvec<size_t> row_ptr;
dh::dvec<SparseBatch::Entry> data;
thrust::device_vector<float> predictions;
DeviceMatrix(DMatrix* dmat, int device_idx, bool silent) : p_mat(dmat) {
dh::safe_cuda(cudaSetDevice(device_idx));
auto info = dmat->info();
ba.allocate(device_idx, silent, &row_ptr, info.num_row + 1, &data,
info.num_nonzero);
auto iter = dmat->RowIterator();
iter->BeforeFirst();
size_t data_offset = 0;
while (iter->Next()) {
auto batch = iter->Value();
// Copy row ptr
thrust::copy(batch.ind_ptr, batch.ind_ptr + batch.size + 1,
row_ptr.tbegin() + batch.base_rowid);
if (batch.base_rowid > 0) {
auto begin_itr = row_ptr.tbegin() + batch.base_rowid;
auto end_itr = begin_itr + batch.size + 1;
increment_offset(begin_itr, end_itr, batch.base_rowid);
}
// Copy data
thrust::copy(batch.data_ptr, batch.data_ptr + batch.ind_ptr[batch.size],
data.tbegin() + data_offset);
data_offset += batch.ind_ptr[batch.size];
}
}
};
/**
* \struct DevicePredictionNode
*
* \brief Packed 16 byte representation of a tree node for use in device
* prediction
*/
struct DevicePredictionNode {
XGBOOST_DEVICE DevicePredictionNode()
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
union NodeValue {
float leaf_weight;
float fvalue;
};
int fidx;
int left_child_idx;
int right_child_idx;
NodeValue val;
DevicePredictionNode(const RegTree::Node& n) { // NOLINT
this->left_child_idx = n.cleft();
this->right_child_idx = n.cright();
this->fidx = n.split_index();
if (n.default_left()) {
fidx |= (1U << 31);
}
if (n.is_leaf()) {
this->val.leaf_weight = n.leaf_value();
} else {
this->val.fvalue = n.split_cond();
}
}
XGBOOST_DEVICE bool IsLeaf() const { return left_child_idx == -1; }
XGBOOST_DEVICE int GetFidx() const { return fidx & ((1U << 31) - 1U); }
XGBOOST_DEVICE bool MissingLeft() const { return (fidx >> 31) != 0; }
XGBOOST_DEVICE int MissingIdx() const {
if (MissingLeft()) {
return this->left_child_idx;
} else {
return this->right_child_idx;
}
}
XGBOOST_DEVICE float GetFvalue() const { return val.fvalue; }
XGBOOST_DEVICE float GetWeight() const { return val.leaf_weight; }
};
struct ElementLoader {
bool use_shared;
size_t* d_row_ptr;
SparseBatch::Entry* d_data;
int num_features;
float* smem;
__device__ ElementLoader(bool use_shared, size_t* row_ptr,
SparseBatch::Entry* entry, int num_features,
float* smem, int num_rows)
: use_shared(use_shared),
d_row_ptr(row_ptr),
d_data(entry),
num_features(num_features),
smem(smem) {
// Copy instances
if (use_shared) {
bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x;
int shared_elements = blockDim.x * num_features;
dh::block_fill(smem, shared_elements, nanf(""));
__syncthreads();
if (global_idx < num_rows) {
bst_uint elem_begin = d_row_ptr[global_idx];
bst_uint elem_end = d_row_ptr[global_idx + 1];
for (bst_uint elem_idx = elem_begin; elem_idx < elem_end; elem_idx++) {
SparseBatch::Entry elem = d_data[elem_idx];
smem[threadIdx.x * num_features + elem.index] = elem.fvalue;
}
}
__syncthreads();
}
}
__device__ float GetFvalue(int ridx, int fidx) {
if (use_shared) {
return smem[threadIdx.x * num_features + fidx];
} else {
// Binary search
auto begin_ptr = d_data + d_row_ptr[ridx];
auto end_ptr = d_data + d_row_ptr[ridx + 1];
SparseBatch::Entry* previous_middle = nullptr;
while (end_ptr != begin_ptr) {
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
if (middle == previous_middle) {
break;
} else {
previous_middle = middle;
}
if (middle->index == fidx) {
return middle->fvalue;
} else if (middle->index < fidx) {
begin_ptr = middle;
} else {
end_ptr = middle;
}
}
// Value is missing
return nanf("");
}
}
};
__device__ float GetLeafWeight(bst_uint ridx, const DevicePredictionNode* tree,
ElementLoader* loader) {
DevicePredictionNode n = tree[0];
while (!n.IsLeaf()) {
float fvalue = loader->GetFvalue(ridx, n.GetFidx());
// Missing value
if (isnan(fvalue)) {
n = tree[n.MissingIdx()];
} else {
if (fvalue < n.GetFvalue()) {
n = tree[n.left_child_idx];
} else {
n = tree[n.right_child_idx];
}
}
}
return n.GetWeight();
}
template <int BLOCK_THREADS>
__global__ void PredictKernel(const DevicePredictionNode* d_nodes,
float* d_out_predictions, size_t* d_tree_segments,
int* d_tree_group, size_t* d_row_ptr,
SparseBatch::Entry* d_data, size_t tree_begin,
size_t tree_end, size_t num_features,
size_t num_rows, bool use_shared, int num_group) {
extern __shared__ float smem[];
bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x;
ElementLoader loader(use_shared, d_row_ptr, d_data, num_features, smem,
num_rows);
if (global_idx >= num_rows) return;
if (num_group == 1) {
float sum = 0;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DevicePredictionNode* d_tree =
d_nodes + d_tree_segments[tree_idx - tree_begin];
sum += GetLeafWeight(global_idx, d_tree, &loader);
}
d_out_predictions[global_idx] += sum;
} else {
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
int tree_group = d_tree_group[tree_idx];
const DevicePredictionNode* d_tree =
d_nodes + d_tree_segments[tree_idx - tree_begin];
bst_uint out_prediction_idx = global_idx * num_group + tree_group;
d_out_predictions[out_prediction_idx] +=
GetLeafWeight(global_idx, d_tree, &loader);
}
}
}
class GPUPredictor : public xgboost::Predictor {
protected:
struct DevicePredictionCacheEntry {
std::shared_ptr<DMatrix> data;
HostDeviceVector<bst_float> predictions;
};
private:
void DevicePredictInternal(DMatrix* dmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, size_t tree_begin,
size_t tree_end) {
if (tree_end - tree_begin == 0) {
return;
}
// Add dmatrix to device if not seen before
if (this->device_matrix_cache_.find(dmat) ==
this->device_matrix_cache_.end()) {
this->device_matrix_cache_.emplace(
dmat, std::unique_ptr<DeviceMatrix>(
new DeviceMatrix(dmat, param.gpu_id, param.silent)));
}
DeviceMatrix* device_matrix = device_matrix_cache_.find(dmat)->second.get();
dh::safe_cuda(cudaSetDevice(param.gpu_id));
CHECK_EQ(model.param.size_leaf_vector, 0);
// Copy decision trees to device
thrust::host_vector<size_t> h_tree_segments;
h_tree_segments.reserve((tree_end - tree_end) + 1);
size_t sum = 0;
h_tree_segments.push_back(sum);
for (auto tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
sum += model.trees[tree_idx]->GetNodes().size();
h_tree_segments.push_back(sum);
}
thrust::host_vector<DevicePredictionNode> h_nodes(h_tree_segments.back());
for (auto tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
auto& src_nodes = model.trees[tree_idx]->GetNodes();
std::copy(src_nodes.begin(), src_nodes.end(),
h_nodes.begin() + h_tree_segments[tree_idx - tree_begin]);
}
nodes.resize(h_nodes.size());
thrust::copy(h_nodes.begin(), h_nodes.end(), nodes.begin());
tree_segments.resize(h_tree_segments.size());
thrust::copy(h_tree_segments.begin(), h_tree_segments.end(),
tree_segments.begin());
tree_group.resize(model.tree_info.size());
thrust::copy(model.tree_info.begin(), model.tree_info.end(),
tree_group.begin());
device_matrix->predictions.resize(out_preds->size());
thrust::copy(out_preds->tbegin(param.gpu_id), out_preds->tend(param.gpu_id),
device_matrix->predictions.begin());
const int BLOCK_THREADS = 128;
const int GRID_SIZE = static_cast<int>(
dh::div_round_up(device_matrix->row_ptr.size() - 1, BLOCK_THREADS));
int shared_memory_bytes = static_cast<int>(
sizeof(float) * device_matrix->p_mat->info().num_col * BLOCK_THREADS);
bool use_shared = true;
if (shared_memory_bytes > max_shared_memory_bytes) {
shared_memory_bytes = 0;
use_shared = false;
}
PredictKernel<BLOCK_THREADS>
<<<GRID_SIZE, BLOCK_THREADS, shared_memory_bytes>>>(
dh::raw(nodes), dh::raw(device_matrix->predictions),
dh::raw(tree_segments), dh::raw(tree_group),
device_matrix->row_ptr.data(), device_matrix->data.data(),
tree_begin, tree_end, device_matrix->p_mat->info().num_col,
device_matrix->p_mat->info().num_row, use_shared,
model.param.num_output_group);
dh::safe_cuda(cudaDeviceSynchronize());
thrust::copy(device_matrix->predictions.begin(),
device_matrix->predictions.end(), out_preds->tbegin(param.gpu_id));
}
public:
GPUPredictor() : cpu_predictor(Predictor::Create("cpu_predictor")) {}
void PredictBatch(DMatrix* dmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, int tree_begin,
unsigned ntree_limit = 0) override {
if (this->PredictFromCache(dmat, out_preds, model, ntree_limit)) {
return;
}
this->InitOutPredictions(dmat->info(), out_preds, model);
int tree_end = ntree_limit * model.param.num_output_group;
if (ntree_limit == 0 || ntree_limit > model.trees.size()) {
tree_end = static_cast<unsigned>(model.trees.size());
}
DevicePredictInternal(dmat, out_preds, model, tree_begin, tree_end);
}
protected:
void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const {
size_t n = model.param.num_output_group * info.num_row;
const std::vector<bst_float>& base_margin = info.base_margin;
out_preds->resize(n, 0.0f, param.gpu_id);
if (base_margin.size() != 0) {
CHECK_EQ(out_preds->size(), n);
thrust::copy(base_margin.begin(), base_margin.end(), out_preds->tbegin(param.gpu_id));
} else {
thrust::fill(out_preds->tbegin(param.gpu_id),
out_preds->tend(param.gpu_id), model.base_margin);
}
}
bool PredictFromCache(DMatrix* dmat,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model,
unsigned ntree_limit) {
if (ntree_limit == 0 ||
ntree_limit * model.param.num_output_group >= model.trees.size()) {
auto it = cache_.find(dmat);
if (it != cache_.end()) {
HostDeviceVector<bst_float>& y = it->second.predictions;
if (y.size() != 0) {
dh::safe_cuda(cudaSetDevice(param.gpu_id));
out_preds->resize(y.size(), 0.0f, param.gpu_id);
dh::safe_cuda
(cudaMemcpy(out_preds->ptr_d(param.gpu_id), y.ptr_d(param.gpu_id),
out_preds->size() * sizeof(bst_float), cudaMemcpyDefault));
return true;
}
}
}
return false;
}
void UpdatePredictionCache(const gbm::GBTreeModel& model,
std::vector<std::unique_ptr<TreeUpdater>>* updaters,
int num_new_trees) override {
auto old_ntree = model.trees.size() - num_new_trees;
// update cache entry
for (auto& kv : cache_) {
PredictionCacheEntry& e = kv.second;
DMatrix* dmat = kv.first;
HostDeviceVector<bst_float>& predictions = e.predictions;
if (predictions.size() == 0) {
// ensure that the device in predictions is correct
predictions.resize(0, 0.0f, param.gpu_id);
cpu_predictor->PredictBatch(dmat, &predictions, model, 0,
static_cast<bst_uint>(model.trees.size()));
} else if (model.param.num_output_group == 1 && updaters->size() > 0 &&
num_new_trees == 1 &&
updaters->back()->UpdatePredictionCache(e.data.get(), &predictions)) {
// do nothing
} else {
DevicePredictInternal(dmat, &predictions, model, old_ntree,
model.trees.size());
}
}
}
void PredictInstance(const SparseBatch::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit,
unsigned root_index) override {
cpu_predictor->PredictInstance(inst, out_preds, model, root_index);
}
void PredictLeaf(DMatrix* p_fmat, std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model,
unsigned ntree_limit) override {
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
}
void PredictContribution(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model,
unsigned ntree_limit,
bool approximate,
int condition,
unsigned condition_feature) override {
cpu_predictor->PredictContribution(p_fmat, out_contribs, model,
ntree_limit, approximate, condition, condition_feature);
}
void PredictInteractionContributions(DMatrix* p_fmat,
std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model,
unsigned ntree_limit,
bool approximate) override {
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model,
ntree_limit, approximate);
}
void Init(const std::vector<std::pair<std::string, std::string>>& cfg,
const std::vector<std::shared_ptr<DMatrix>>& cache) override {
Predictor::Init(cfg, cache);
cpu_predictor->Init(cfg, cache);
param.InitAllowUnknown(cfg);
max_shared_memory_bytes = dh::max_shared_memory(param.gpu_id);
}
private:
GPUPredictionParam param;
std::unique_ptr<Predictor> cpu_predictor;
std::unordered_map<DMatrix*, std::unique_ptr<DeviceMatrix>>
device_matrix_cache_;
thrust::device_vector<DevicePredictionNode> nodes;
thrust::device_vector<size_t> tree_segments;
thrust::device_vector<int> tree_group;
size_t max_shared_memory_bytes;
};
XGBOOST_REGISTER_PREDICTOR(GPUPredictor, "gpu_predictor")
.describe("Make predictions using GPU.")
.set_body([]() { return new GPUPredictor(); });
} // namespace predictor
} // namespace xgboost