xgboost/tests/cpp/plugin/test_sycl_hist_updater.cc
Dmitry Razdoburdin f6cae4da85
[SYCL] Add splits evaluation (#10605)
---------

Co-authored-by: Dmitry Razdoburdin <>
2024-07-22 18:14:06 +08:00

443 lines
17 KiB
C++

/**
* Copyright 2020-2024 by XGBoost contributors
*/
#include <gtest/gtest.h>
#include <oneapi/dpl/random>
#include "../../../plugin/sycl/tree/hist_updater.h"
#include "../../../plugin/sycl/device_manager.h"
#include "../helpers.h"
namespace xgboost::sycl::tree {
// Use this class to test the protected methods of HistUpdater
template <typename GradientSumT>
class TestHistUpdater : public HistUpdater<GradientSumT> {
public:
TestHistUpdater(const Context* ctx,
::sycl::queue qu,
const xgboost::tree::TrainParam& param,
std::unique_ptr<TreeUpdater> pruner,
FeatureInteractionConstraintHost int_constraints_,
DMatrix const* fmat) : HistUpdater<GradientSumT>(ctx, qu, param,
std::move(pruner),
int_constraints_, fmat) {}
void TestInitSampling(const USMVector<GradientPair, MemoryType::on_device> &gpair,
USMVector<size_t, MemoryType::on_device>* row_indices) {
HistUpdater<GradientSumT>::InitSampling(gpair, row_indices);
}
auto* TestInitData(const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair, MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree) {
HistUpdater<GradientSumT>::InitData(gmat, gpair, fmat, tree);
return &(HistUpdater<GradientSumT>::row_set_collection_);
}
const auto* TestBuildHistogramsLossGuide(ExpandEntry entry,
const common::GHistIndexMatrix &gmat,
RegTree *p_tree,
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
HistUpdater<GradientSumT>::BuildHistogramsLossGuide(entry, gmat, p_tree, gpair);
return &(HistUpdater<GradientSumT>::hist_);
}
auto TestInitNewNode(int nid,
const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair, MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree) {
HistUpdater<GradientSumT>::InitNewNode(nid, gmat, gpair, fmat, tree);
return HistUpdater<GradientSumT>::snode_host_[nid];
}
auto TestEvaluateSplits(const std::vector<ExpandEntry>& nodes_set,
const common::GHistIndexMatrix& gmat,
const RegTree& tree) {
HistUpdater<GradientSumT>::EvaluateSplits(nodes_set, gmat, tree);
return HistUpdater<GradientSumT>::snode_host_;
}
};
void GenerateRandomGPairs(::sycl::queue* qu, GradientPair* gpair_ptr, size_t num_rows, bool has_neg_hess) {
qu->submit([&](::sycl::handler& cgh) {
cgh.parallel_for<>(::sycl::range<1>(::sycl::range<1>(num_rows)),
[=](::sycl::item<1> pid) {
uint64_t i = pid.get_linear_id();
constexpr uint32_t seed = 777;
oneapi::dpl::minstd_rand engine(seed, i);
GradientPair::ValueT smallest_hess_val = has_neg_hess ? -1. : 0.;
oneapi::dpl::uniform_real_distribution<GradientPair::ValueT> distr(smallest_hess_val, 1.);
gpair_ptr[i] = {distr(engine), distr(engine)};
});
});
qu->wait();
}
template <typename GradientSumT>
void TestHistUpdaterSampling(const xgboost::tree::TrainParam& param) {
const size_t num_rows = 1u << 12;
const size_t num_columns = 1;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
ObjInfo task{ObjInfo::kRegression};
auto p_fmat = RandomDataGenerator{num_rows, num_columns, 0.0}.GenerateDMatrix();
FeatureInteractionConstraintHost int_constraints;
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
USMVector<size_t, MemoryType::on_device> row_indices_0(&qu, num_rows);
USMVector<size_t, MemoryType::on_device> row_indices_1(&qu, num_rows);
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, num_rows);
GenerateRandomGPairs(&qu, gpair.Data(), num_rows, true);
updater.TestInitSampling(gpair, &row_indices_0);
size_t n_samples = row_indices_0.Size();
// Half of gpairs have neg hess
ASSERT_LT(n_samples, num_rows * 0.5 * param.subsample * 1.2);
ASSERT_GT(n_samples, num_rows * 0.5 * param.subsample / 1.2);
// Check if two lanunches generate different realisations:
updater.TestInitSampling(gpair, &row_indices_1);
if (row_indices_1.Size() == n_samples) {
std::vector<size_t> row_indices_0_host(n_samples);
std::vector<size_t> row_indices_1_host(n_samples);
qu.memcpy(row_indices_0_host.data(), row_indices_0.Data(), n_samples * sizeof(size_t)).wait();
qu.memcpy(row_indices_1_host.data(), row_indices_1.Data(), n_samples * sizeof(size_t)).wait();
// The order in row_indices_0 and row_indices_1 can be different
std::set<size_t> rows;
for (auto row : row_indices_0_host) {
rows.insert(row);
}
size_t num_diffs = 0;
for (auto row : row_indices_1_host) {
if (rows.count(row) == 0) num_diffs++;
}
ASSERT_NE(num_diffs, 0);
}
}
template <typename GradientSumT>
void TestHistUpdaterInitData(const xgboost::tree::TrainParam& param, bool has_neg_hess) {
const size_t num_rows = 1u << 8;
const size_t num_columns = 1;
const size_t n_bins = 32;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
ObjInfo task{ObjInfo::kRegression};
auto p_fmat = RandomDataGenerator{num_rows, num_columns, 0.0}.GenerateDMatrix();
FeatureInteractionConstraintHost int_constraints;
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, num_rows);
GenerateRandomGPairs(&qu, gpair.Data(), num_rows, has_neg_hess);
DeviceMatrix dmat;
dmat.Init(qu, p_fmat.get());
common::GHistIndexMatrix gmat;
gmat.Init(qu, &ctx, dmat, n_bins);
RegTree tree;
auto* row_set_collection = updater.TestInitData(gmat, gpair, *p_fmat, tree);
auto& row_indices = row_set_collection->Data();
std::vector<size_t> row_indices_host(row_indices.Size());
qu.memcpy(row_indices_host.data(), row_indices.DataConst(), row_indices.Size()*sizeof(size_t)).wait();
if (!has_neg_hess) {
for (size_t i = 0; i < num_rows; ++i) {
ASSERT_EQ(row_indices_host[i], i);
}
} else {
std::vector<GradientPair> gpair_host(num_rows);
qu.memcpy(gpair_host.data(), gpair.Data(), num_rows*sizeof(GradientPair)).wait();
std::set<size_t> rows;
for (size_t i = 0; i < num_rows; ++i) {
if (gpair_host[i].GetHess() >= 0.0f) {
rows.insert(i);
}
}
ASSERT_EQ(rows.size(), row_indices_host.size());
for (size_t row_idx : row_indices_host) {
ASSERT_EQ(rows.count(row_idx), 1);
}
}
}
template <typename GradientSumT>
void TestHistUpdaterBuildHistogramsLossGuide(const xgboost::tree::TrainParam& param, float sparsity) {
const size_t num_rows = 1u << 8;
const size_t num_columns = 1;
const size_t n_bins = 32;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
ObjInfo task{ObjInfo::kRegression};
auto p_fmat = RandomDataGenerator{num_rows, num_columns, sparsity}.GenerateDMatrix();
FeatureInteractionConstraintHost int_constraints;
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
updater.SetHistSynchronizer(new BatchHistSynchronizer<GradientSumT>());
updater.SetHistRowsAdder(new BatchHistRowsAdder<GradientSumT>());
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, num_rows);
auto* gpair_ptr = gpair.Data();
GenerateRandomGPairs(&qu, gpair_ptr, num_rows, false);
DeviceMatrix dmat;
dmat.Init(qu, p_fmat.get());
common::GHistIndexMatrix gmat;
gmat.Init(qu, &ctx, dmat, n_bins);
RegTree tree;
tree.ExpandNode(0, 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
tree.ExpandNode(tree[0].LeftChild(), 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
tree.ExpandNode(tree[0].RightChild(), 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
ExpandEntry node0(0, tree.GetDepth(0));
ExpandEntry node1(1, tree.GetDepth(1));
ExpandEntry node2(2, tree.GetDepth(2));
auto* row_set_collection = updater.TestInitData(gmat, gpair, *p_fmat, tree);
row_set_collection->AddSplit(0, 1, 2, 42, num_rows - 42);
updater.TestBuildHistogramsLossGuide(node0, gmat, &tree, gpair);
const auto* hist = updater.TestBuildHistogramsLossGuide(node1, gmat, &tree, gpair);
ASSERT_EQ((*hist)[0].Size(), n_bins);
ASSERT_EQ((*hist)[1].Size(), n_bins);
ASSERT_EQ((*hist)[2].Size(), n_bins);
std::vector<xgboost::detail::GradientPairInternal<GradientSumT>> hist0_host(n_bins);
std::vector<xgboost::detail::GradientPairInternal<GradientSumT>> hist1_host(n_bins);
std::vector<xgboost::detail::GradientPairInternal<GradientSumT>> hist2_host(n_bins);
qu.memcpy(hist0_host.data(), (*hist)[0].DataConst(), sizeof(xgboost::detail::GradientPairInternal<GradientSumT>) * n_bins);
qu.memcpy(hist1_host.data(), (*hist)[1].DataConst(), sizeof(xgboost::detail::GradientPairInternal<GradientSumT>) * n_bins);
qu.memcpy(hist2_host.data(), (*hist)[2].DataConst(), sizeof(xgboost::detail::GradientPairInternal<GradientSumT>) * n_bins);
qu.wait();
for (size_t idx_bin = 0; idx_bin < n_bins; ++idx_bin) {
EXPECT_NEAR(hist0_host[idx_bin].GetGrad(), hist1_host[idx_bin].GetGrad() + hist2_host[idx_bin].GetGrad(), 1e-6);
EXPECT_NEAR(hist0_host[idx_bin].GetHess(), hist1_host[idx_bin].GetHess() + hist2_host[idx_bin].GetHess(), 1e-6);
}
}
template <typename GradientSumT>
void TestHistUpdaterInitNewNode(const xgboost::tree::TrainParam& param, float sparsity) {
const size_t num_rows = 1u << 8;
const size_t num_columns = 1;
const size_t n_bins = 32;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
ObjInfo task{ObjInfo::kRegression};
auto p_fmat = RandomDataGenerator{num_rows, num_columns, sparsity}.GenerateDMatrix();
FeatureInteractionConstraintHost int_constraints;
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
updater.SetHistSynchronizer(new BatchHistSynchronizer<GradientSumT>());
updater.SetHistRowsAdder(new BatchHistRowsAdder<GradientSumT>());
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, num_rows);
auto* gpair_ptr = gpair.Data();
GenerateRandomGPairs(&qu, gpair_ptr, num_rows, false);
DeviceMatrix dmat;
dmat.Init(qu, p_fmat.get());
common::GHistIndexMatrix gmat;
gmat.Init(qu, &ctx, dmat, n_bins);
RegTree tree;
tree.ExpandNode(0, 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
ExpandEntry node(ExpandEntry::kRootNid, tree.GetDepth(ExpandEntry::kRootNid));
auto* row_set_collection = updater.TestInitData(gmat, gpair, *p_fmat, tree);
auto& row_idxs = row_set_collection->Data();
const size_t* row_idxs_ptr = row_idxs.DataConst();
updater.TestBuildHistogramsLossGuide(node, gmat, &tree, gpair);
const auto snode = updater.TestInitNewNode(ExpandEntry::kRootNid, gmat, gpair, *p_fmat, tree);
GradStats<GradientSumT> grad_stat;
{
::sycl::buffer<GradStats<GradientSumT>> buff(&grad_stat, 1);
qu.submit([&](::sycl::handler& cgh) {
auto buff_acc = buff.template get_access<::sycl::access::mode::read_write>(cgh);
cgh.single_task<>([=]() {
for (size_t i = 0; i < num_rows; ++i) {
size_t row_idx = row_idxs_ptr[i];
buff_acc[0] += GradStats<GradientSumT>(gpair_ptr[row_idx].GetGrad(),
gpair_ptr[row_idx].GetHess());
}
});
}).wait_and_throw();
}
EXPECT_NEAR(snode.stats.GetGrad(), grad_stat.GetGrad(), 1e-6 * grad_stat.GetGrad());
EXPECT_NEAR(snode.stats.GetHess(), grad_stat.GetHess(), 1e-6 * grad_stat.GetHess());
}
template <typename GradientSumT>
void TestHistUpdaterEvaluateSplits(const xgboost::tree::TrainParam& param) {
const size_t num_rows = 1u << 8;
const size_t num_columns = 2;
const size_t n_bins = 32;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
ObjInfo task{ObjInfo::kRegression};
auto p_fmat = RandomDataGenerator{num_rows, num_columns, 0.0f}.GenerateDMatrix();
FeatureInteractionConstraintHost int_constraints;
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
updater.SetHistSynchronizer(new BatchHistSynchronizer<GradientSumT>());
updater.SetHistRowsAdder(new BatchHistRowsAdder<GradientSumT>());
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, num_rows);
auto* gpair_ptr = gpair.Data();
GenerateRandomGPairs(&qu, gpair_ptr, num_rows, false);
DeviceMatrix dmat;
dmat.Init(qu, p_fmat.get());
common::GHistIndexMatrix gmat;
gmat.Init(qu, &ctx, dmat, n_bins);
RegTree tree;
tree.ExpandNode(0, 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
ExpandEntry node(ExpandEntry::kRootNid, tree.GetDepth(ExpandEntry::kRootNid));
auto* row_set_collection = updater.TestInitData(gmat, gpair, *p_fmat, tree);
auto& row_idxs = row_set_collection->Data();
const size_t* row_idxs_ptr = row_idxs.DataConst();
const auto* hist = updater.TestBuildHistogramsLossGuide(node, gmat, &tree, gpair);
const auto snode_init = updater.TestInitNewNode(ExpandEntry::kRootNid, gmat, gpair, *p_fmat, tree);
const auto snode_updated = updater.TestEvaluateSplits({node}, gmat, tree);
auto best_loss_chg = snode_updated[0].best.loss_chg;
auto stats = snode_init.stats;
auto root_gain = snode_init.root_gain;
// Check all splits manually. Save the best one and compare with the ans
TreeEvaluator<GradientSumT> tree_evaluator(qu, param, num_columns);
auto evaluator = tree_evaluator.GetEvaluator();
const uint32_t* cut_ptr = gmat.cut_device.Ptrs().DataConst();
const size_t size = gmat.cut_device.Ptrs().Size();
int n_better_splits = 0;
const auto* hist_ptr = (*hist)[0].DataConst();
std::vector<bst_float> best_loss_chg_des(1, -1);
{
::sycl::buffer<bst_float> best_loss_chg_buff(best_loss_chg_des.data(), 1);
qu.submit([&](::sycl::handler& cgh) {
auto best_loss_chg_acc = best_loss_chg_buff.template get_access<::sycl::access::mode::read_write>(cgh);
cgh.single_task<>([=]() {
for (size_t i = 1; i < size; ++i) {
GradStats<GradientSumT> left(0, 0);
GradStats<GradientSumT> right = stats - left;
for (size_t j = cut_ptr[i-1]; j < cut_ptr[i]; ++j) {
auto loss_change = evaluator.CalcSplitGain(0, i - 1, left, right) - root_gain;
if (loss_change > best_loss_chg_acc[0]) {
best_loss_chg_acc[0] = loss_change;
}
left.Add(hist_ptr[j].GetGrad(), hist_ptr[j].GetHess());
right = stats - left;
}
}
});
}).wait();
}
ASSERT_NEAR(best_loss_chg_des[0], best_loss_chg, 1e-6);
}
TEST(SyclHistUpdater, Sampling) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"subsample", "0.7"}});
TestHistUpdaterSampling<float>(param);
TestHistUpdaterSampling<double>(param);
}
TEST(SyclHistUpdater, InitData) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"subsample", "1"}});
TestHistUpdaterInitData<float>(param, true);
TestHistUpdaterInitData<float>(param, false);
TestHistUpdaterInitData<double>(param, true);
TestHistUpdaterInitData<double>(param, false);
}
TEST(SyclHistUpdater, BuildHistogramsLossGuide) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"max_depth", "3"}});
TestHistUpdaterBuildHistogramsLossGuide<float>(param, 0.0);
TestHistUpdaterBuildHistogramsLossGuide<float>(param, 0.5);
TestHistUpdaterBuildHistogramsLossGuide<double>(param, 0.0);
TestHistUpdaterBuildHistogramsLossGuide<double>(param, 0.5);
}
TEST(SyclHistUpdater, InitNewNode) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"max_depth", "3"}});
TestHistUpdaterInitNewNode<float>(param, 0.0);
TestHistUpdaterInitNewNode<float>(param, 0.5);
TestHistUpdaterInitNewNode<double>(param, 0.0);
TestHistUpdaterInitNewNode<double>(param, 0.5);
}
TEST(SyclHistUpdater, EvaluateSplits) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"max_depth", "3"}});
TestHistUpdaterEvaluateSplits<float>(param);
TestHistUpdaterEvaluateSplits<double>(param);
}
} // namespace xgboost::sycl::tree