This is already partially supported but never properly tested. So the only possible way to use it is calling `numpy.ndarray.flatten` with `base_margin` before passing it into XGBoost. This PR adds proper support for most of the data types along with tests.
341 lines
12 KiB
Python
341 lines
12 KiB
Python
import numpy as np
|
|
import xgboost as xgb
|
|
import sys
|
|
import pytest
|
|
|
|
sys.path.append("tests/python")
|
|
import testing as tm
|
|
from test_dmatrix import set_base_margin_info
|
|
|
|
|
|
def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):
|
|
'''Test constructing DMatrix from cudf'''
|
|
import cudf
|
|
import pandas as pd
|
|
|
|
kRows = 80
|
|
kCols = 3
|
|
|
|
na = np.random.randn(kRows, kCols)
|
|
na[:, 0:2] = na[:, 0:2].astype(input_type)
|
|
|
|
na[5, 0] = missing
|
|
na[3, 1] = missing
|
|
|
|
pa = pd.DataFrame({'0': na[:, 0],
|
|
'1': na[:, 1],
|
|
'2': na[:, 2].astype(np.int32)})
|
|
|
|
np_label = np.random.randn(kRows).astype(input_type)
|
|
pa_label = pd.DataFrame(np_label)
|
|
|
|
cd = cudf.from_pandas(pa)
|
|
cd_label = cudf.from_pandas(pa_label).iloc[:, 0]
|
|
|
|
dtrain = DMatrixT(cd, missing=missing, label=cd_label)
|
|
assert dtrain.num_col() == kCols
|
|
assert dtrain.num_row() == kRows
|
|
|
|
|
|
def _test_from_cudf(DMatrixT):
|
|
'''Test constructing DMatrix from cudf'''
|
|
import cudf
|
|
dmatrix_from_cudf(np.float32, DMatrixT, np.NAN)
|
|
dmatrix_from_cudf(np.float64, DMatrixT, np.NAN)
|
|
|
|
dmatrix_from_cudf(np.int8, DMatrixT, 2)
|
|
dmatrix_from_cudf(np.int32, DMatrixT, -2)
|
|
dmatrix_from_cudf(np.int64, DMatrixT, -3)
|
|
|
|
cd = cudf.DataFrame({'x': [1, 2, 3], 'y': [0.1, 0.2, 0.3]})
|
|
dtrain = DMatrixT(cd)
|
|
|
|
assert dtrain.feature_names == ['x', 'y']
|
|
assert dtrain.feature_types == ['int', 'float']
|
|
|
|
series = cudf.DataFrame({'x': [1, 2, 3]}).iloc[:, 0]
|
|
assert isinstance(series, cudf.Series)
|
|
dtrain = DMatrixT(series)
|
|
|
|
assert dtrain.feature_names == ['x']
|
|
assert dtrain.feature_types == ['int']
|
|
|
|
with pytest.raises(Exception):
|
|
dtrain = DMatrixT(cd, label=cd)
|
|
|
|
# Test when number of elements is less than 8
|
|
X = cudf.DataFrame({'x': cudf.Series([0, 1, 2, np.NAN, 4],
|
|
dtype=np.int32)})
|
|
dtrain = DMatrixT(X)
|
|
assert dtrain.num_col() == 1
|
|
assert dtrain.num_row() == 5
|
|
|
|
# Boolean is not supported.
|
|
X_boolean = cudf.DataFrame({'x': cudf.Series([True, False])})
|
|
with pytest.raises(Exception):
|
|
dtrain = DMatrixT(X_boolean)
|
|
|
|
y_boolean = cudf.DataFrame({
|
|
'x': cudf.Series([True, False, True, True, True])})
|
|
with pytest.raises(Exception):
|
|
dtrain = DMatrixT(X_boolean, label=y_boolean)
|
|
|
|
|
|
def _test_cudf_training(DMatrixT):
|
|
from cudf import DataFrame as df
|
|
import pandas as pd
|
|
np.random.seed(1)
|
|
X = pd.DataFrame(np.random.randn(50, 10))
|
|
y = pd.DataFrame(np.random.randn(50))
|
|
weights = np.random.random(50) + 1.0
|
|
cudf_weights = df.from_pandas(pd.DataFrame(weights))
|
|
base_margin = np.random.random(50)
|
|
cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))
|
|
|
|
evals_result_cudf = {}
|
|
dtrain_cudf = DMatrixT(df.from_pandas(X), df.from_pandas(y), weight=cudf_weights,
|
|
base_margin=cudf_base_margin)
|
|
params = {'gpu_id': 0, 'tree_method': 'gpu_hist'}
|
|
xgb.train(params, dtrain_cudf, evals=[(dtrain_cudf, "train")],
|
|
evals_result=evals_result_cudf)
|
|
evals_result_np = {}
|
|
dtrain_np = xgb.DMatrix(X, y, weight=weights, base_margin=base_margin)
|
|
xgb.train(params, dtrain_np, evals=[(dtrain_np, "train")],
|
|
evals_result=evals_result_np)
|
|
assert np.array_equal(evals_result_cudf["train"]["rmse"], evals_result_np["train"]["rmse"])
|
|
|
|
|
|
def _test_cudf_metainfo(DMatrixT):
|
|
from cudf import DataFrame as df
|
|
import pandas as pd
|
|
n = 100
|
|
X = np.random.random((n, 2))
|
|
dmat_cudf = DMatrixT(df.from_pandas(pd.DataFrame(X)))
|
|
dmat = xgb.DMatrix(X)
|
|
floats = np.random.random(n)
|
|
uints = np.array([4, 2, 8]).astype("uint32")
|
|
cudf_floats = df.from_pandas(pd.DataFrame(floats))
|
|
cudf_uints = df.from_pandas(pd.DataFrame(uints))
|
|
dmat.set_float_info('weight', floats)
|
|
dmat.set_float_info('label', floats)
|
|
dmat.set_float_info('base_margin', floats)
|
|
dmat.set_uint_info('group', uints)
|
|
dmat_cudf.set_info(weight=cudf_floats)
|
|
dmat_cudf.set_info(label=cudf_floats)
|
|
dmat_cudf.set_info(base_margin=cudf_floats)
|
|
dmat_cudf.set_info(group=cudf_uints)
|
|
|
|
# Test setting info with cudf DataFrame
|
|
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
|
|
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
|
|
assert np.array_equal(dmat.get_float_info('base_margin'),
|
|
dmat_cudf.get_float_info('base_margin'))
|
|
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
|
|
|
|
# Test setting info with cudf Series
|
|
dmat_cudf.set_info(weight=cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_info(label=cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_info(base_margin=cudf_floats[cudf_floats.columns[0]])
|
|
dmat_cudf.set_info(group=cudf_uints[cudf_uints.columns[0]])
|
|
assert np.array_equal(dmat.get_float_info('weight'), dmat_cudf.get_float_info('weight'))
|
|
assert np.array_equal(dmat.get_float_info('label'), dmat_cudf.get_float_info('label'))
|
|
assert np.array_equal(dmat.get_float_info('base_margin'),
|
|
dmat_cudf.get_float_info('base_margin'))
|
|
assert np.array_equal(dmat.get_uint_info('group_ptr'), dmat_cudf.get_uint_info('group_ptr'))
|
|
|
|
set_base_margin_info(df, DMatrixT, "gpu_hist")
|
|
|
|
|
|
class TestFromColumnar:
|
|
'''Tests for constructing DMatrix from data structure conforming Apache
|
|
Arrow specification.'''
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_simple_dmatrix_from_cudf(self):
|
|
_test_from_cudf(xgb.DMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_device_dmatrix_from_cudf(self):
|
|
_test_from_cudf(xgb.DeviceQuantileDMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_training_simple_dmatrix(self):
|
|
_test_cudf_training(xgb.DMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_training_device_dmatrix(self):
|
|
_test_cudf_training(xgb.DeviceQuantileDMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_metainfo_simple_dmatrix(self):
|
|
_test_cudf_metainfo(xgb.DMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_metainfo_device_dmatrix(self):
|
|
_test_cudf_metainfo(xgb.DeviceQuantileDMatrix)
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
def test_cudf_categorical(self):
|
|
import cudf
|
|
_X, _y = tm.make_categorical(100, 30, 17, False)
|
|
X = cudf.from_pandas(_X)
|
|
y = cudf.from_pandas(_y)
|
|
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
assert len(Xy.feature_types) == X.shape[1]
|
|
assert all(t == "c" for t in Xy.feature_types)
|
|
|
|
Xy = xgb.DeviceQuantileDMatrix(X, y, enable_categorical=True)
|
|
assert len(Xy.feature_types) == X.shape[1]
|
|
assert all(t == "c" for t in Xy.feature_types)
|
|
|
|
# test missing value
|
|
X = cudf.DataFrame({"f0": ["a", "b", np.NaN]})
|
|
X["f0"] = X["f0"].astype("category")
|
|
df, cat_codes, _, _ = xgb.data._transform_cudf_df(
|
|
X, None, None, enable_categorical=True
|
|
)
|
|
for col in cat_codes:
|
|
assert col.has_nulls
|
|
|
|
y = [0, 1, 2]
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(X, y)
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
assert Xy.num_row() == 3
|
|
assert Xy.num_col() == 1
|
|
|
|
with pytest.raises(ValueError):
|
|
xgb.DeviceQuantileDMatrix(X, y)
|
|
|
|
Xy = xgb.DeviceQuantileDMatrix(X, y, enable_categorical=True)
|
|
assert Xy.num_row() == 3
|
|
assert Xy.num_col() == 1
|
|
|
|
X = X["f0"]
|
|
with pytest.raises(ValueError):
|
|
xgb.DMatrix(X, y)
|
|
|
|
Xy = xgb.DMatrix(X, y, enable_categorical=True)
|
|
assert Xy.num_row() == 3
|
|
assert Xy.num_col() == 1
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
@pytest.mark.skipif(**tm.no_cupy())
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_cudf_training_with_sklearn():
|
|
from cudf import DataFrame as df
|
|
from cudf import Series as ss
|
|
import pandas as pd
|
|
np.random.seed(1)
|
|
X = pd.DataFrame(np.random.randn(50, 10))
|
|
y = pd.DataFrame((np.random.randn(50) > 0).astype(np.int8))
|
|
weights = np.random.random(50) + 1.0
|
|
cudf_weights = df.from_pandas(pd.DataFrame(weights))
|
|
base_margin = np.random.random(50)
|
|
cudf_base_margin = df.from_pandas(pd.DataFrame(base_margin))
|
|
|
|
X_cudf = df.from_pandas(X)
|
|
y_cudf = df.from_pandas(y)
|
|
y_cudf_series = ss(data=y.iloc[:, 0])
|
|
|
|
for y_obj in [y_cudf, y_cudf_series]:
|
|
clf = xgb.XGBClassifier(gpu_id=0, tree_method='gpu_hist')
|
|
clf.fit(X_cudf, y_obj, sample_weight=cudf_weights, base_margin=cudf_base_margin,
|
|
eval_set=[(X_cudf, y_obj)])
|
|
pred = clf.predict(X_cudf)
|
|
assert np.array_equal(np.unique(pred), np.array([0, 1]))
|
|
|
|
|
|
class IterForDMatrixTest(xgb.core.DataIter):
|
|
'''A data iterator for XGBoost DMatrix.
|
|
|
|
`reset` and `next` are required for any data iterator, other functions here
|
|
are utilites for demonstration's purpose.
|
|
|
|
'''
|
|
ROWS_PER_BATCH = 100 # data is splited by rows
|
|
BATCHES = 16
|
|
|
|
def __init__(self, categorical):
|
|
'''Generate some random data for demostration.
|
|
|
|
Actual data can be anything that is currently supported by XGBoost.
|
|
'''
|
|
import cudf
|
|
self.rows = self.ROWS_PER_BATCH
|
|
|
|
if categorical:
|
|
self._data = []
|
|
self._labels = []
|
|
for i in range(self.BATCHES):
|
|
X, y = tm.make_categorical(self.ROWS_PER_BATCH, 4, 13, False)
|
|
self._data.append(cudf.from_pandas(X))
|
|
self._labels.append(y)
|
|
else:
|
|
rng = np.random.RandomState(1994)
|
|
self._data = [
|
|
cudf.DataFrame(
|
|
{'a': rng.randn(self.ROWS_PER_BATCH),
|
|
'b': rng.randn(self.ROWS_PER_BATCH)})] * self.BATCHES
|
|
self._labels = [rng.randn(self.rows)] * self.BATCHES
|
|
|
|
self.it = 0 # set iterator to 0
|
|
super().__init__()
|
|
|
|
def as_array(self):
|
|
import cudf
|
|
return cudf.concat(self._data)
|
|
|
|
def as_array_labels(self):
|
|
return np.concatenate(self._labels)
|
|
|
|
def data(self):
|
|
'''Utility function for obtaining current batch of data.'''
|
|
return self._data[self.it]
|
|
|
|
def labels(self):
|
|
'''Utility function for obtaining current batch of label.'''
|
|
return self._labels[self.it]
|
|
|
|
def reset(self):
|
|
'''Reset the iterator'''
|
|
self.it = 0
|
|
|
|
def next(self, input_data):
|
|
'''Yield next batch of data'''
|
|
if self.it == len(self._data):
|
|
# Return 0 when there's no more batch.
|
|
return 0
|
|
input_data(data=self.data(), label=self.labels())
|
|
self.it += 1
|
|
return 1
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_cudf())
|
|
@pytest.mark.parametrize("enable_categorical", [True, False])
|
|
def test_from_cudf_iter(enable_categorical):
|
|
rounds = 100
|
|
it = IterForDMatrixTest(enable_categorical)
|
|
params = {"tree_method": "gpu_hist"}
|
|
|
|
# Use iterator
|
|
m_it = xgb.DeviceQuantileDMatrix(it, enable_categorical=enable_categorical)
|
|
reg_with_it = xgb.train(params, m_it, num_boost_round=rounds)
|
|
|
|
X = it.as_array()
|
|
y = it.as_array_labels()
|
|
|
|
m = xgb.DMatrix(X, y, enable_categorical=enable_categorical)
|
|
|
|
assert m_it.num_col() == m.num_col()
|
|
assert m_it.num_row() == m.num_row()
|
|
|
|
reg = xgb.train(params, m, num_boost_round=rounds)
|
|
|
|
predict = reg.predict(m)
|
|
predict_with_it = reg_with_it.predict(m_it)
|
|
np.testing.assert_allclose(predict_with_it, predict)
|