158 lines
6.4 KiB
C++
158 lines
6.4 KiB
C++
#ifndef XGBOOST_H
|
|
#define XGBOOST_H
|
|
/*!
|
|
* \file xgboost.h
|
|
* \brief the general gradient boosting interface
|
|
*
|
|
* common practice of this header: use IBooster and CreateBooster<FMatrixS>
|
|
*
|
|
* \author Tianqi Chen: tianqi.tchen@gmail.com
|
|
*/
|
|
#include <vector>
|
|
#include "../utils/xgboost_utils.h"
|
|
#include "../utils/xgboost_fmap.h"
|
|
#include "../utils/xgboost_stream.h"
|
|
#include "../utils/xgboost_config.h"
|
|
#include "xgboost_data.h"
|
|
|
|
/*! \brief namespace for xboost package */
|
|
namespace xgboost{
|
|
/*! \brief namespace for boosters */
|
|
namespace booster{
|
|
/*!
|
|
* \brief interface of a gradient boosting learner
|
|
* \tparam FMatrix the feature matrix format that the booster takes
|
|
*/
|
|
template<typename FMatrix>
|
|
class InterfaceBooster{
|
|
public:
|
|
// interface for model setting and loading
|
|
// calling procedure:
|
|
// (1) booster->SetParam to setting necessary parameters
|
|
// (2) if it is first time usage of the model:
|
|
// call booster->InitModel
|
|
// else:
|
|
// call booster->LoadModel
|
|
// (3) booster->DoBoost to update the model
|
|
// (4) booster->Predict to get new prediction
|
|
/*!
|
|
* \brief set parameters from outside
|
|
* \param name name of the parameter
|
|
* \param val value of the parameter
|
|
*/
|
|
virtual void SetParam(const char *name, const char *val) = 0;
|
|
/*!
|
|
* \brief load model from stream
|
|
* \param fi input stream
|
|
*/
|
|
virtual void LoadModel(utils::IStream &fi) = 0;
|
|
/*!
|
|
* \brief save model to stream
|
|
* \param fo output stream
|
|
*/
|
|
virtual void SaveModel(utils::IStream &fo) const = 0;
|
|
/*!
|
|
* \brief initialize solver before training, called before training
|
|
* this function is reserved for solver to allocate necessary space and do other preparation
|
|
*/
|
|
virtual void InitModel(void) = 0;
|
|
public:
|
|
/*!
|
|
* \brief do gradient boost training for one step, using the information given,
|
|
* Note: content of grad and hess can change after DoBoost
|
|
* \param grad first order gradient of each instance
|
|
* \param hess second order gradient of each instance
|
|
* \param feats features of each instance
|
|
* \param root_index pre-partitioned root index of each instance,
|
|
* root_index.size() can be 0 which indicates that no pre-partition involved
|
|
*/
|
|
virtual void DoBoost(std::vector<float> &grad,
|
|
std::vector<float> &hess,
|
|
const FMatrix &feats,
|
|
const std::vector<unsigned> &root_index) = 0;
|
|
/*!
|
|
* \brief predict the path ids along a trees, for given sparse feature vector. When booster is a tree
|
|
* \param path the result of path
|
|
* \param feats feature matrix
|
|
* \param row_index row index in the feature matrix
|
|
* \param root_index root id of current instance, default = 0
|
|
*/
|
|
virtual void PredPath(std::vector<int> &path, const FMatrix &feats,
|
|
bst_uint row_index, unsigned root_index = 0){
|
|
utils::Error("not implemented");
|
|
}
|
|
/*!
|
|
* \brief predict values for given sparse feature vector
|
|
*
|
|
* NOTE: in tree implementation, Sparse Predict is OpenMP threadsafe, but not threadsafe in general,
|
|
* dense version of Predict to ensures threadsafety
|
|
* \param feats feature matrix
|
|
* \param row_index row index in the feature matrix
|
|
* \param root_index root id of current instance, default = 0
|
|
* \return prediction
|
|
*/
|
|
virtual float Predict(const FMatrix &feats, bst_uint row_index, unsigned root_index = 0){
|
|
utils::Error("not implemented");
|
|
return 0.0f;
|
|
}
|
|
/*!
|
|
* \brief predict values for given dense feature vector
|
|
* \param feat feature vector in dense format
|
|
* \param funknown indicator that the feature is missing
|
|
* \param rid root id of current instance, default = 0
|
|
* \return prediction
|
|
*/
|
|
virtual float Predict(const std::vector<float> &feat,
|
|
const std::vector<bool> &funknown,
|
|
unsigned rid = 0){
|
|
utils::Error("not implemented");
|
|
return 0.0f;
|
|
}
|
|
/*!
|
|
* \brief print information
|
|
* \param fo output stream
|
|
*/
|
|
virtual void PrintInfo(FILE *fo){}
|
|
/*!
|
|
* \brief dump model into text file
|
|
* \param fo output stream
|
|
* \param fmap feature map that may help give interpretations of feature
|
|
* \param with_stats whether print statistics
|
|
*/
|
|
virtual void DumpModel(FILE *fo, const utils::FeatMap& fmap, bool with_stats = false){
|
|
utils::Error("not implemented");
|
|
}
|
|
public:
|
|
/*! \brief virtual destructor */
|
|
virtual ~InterfaceBooster(void){}
|
|
};
|
|
};
|
|
namespace booster{
|
|
/*!
|
|
* \brief this will is the most commonly used booster interface
|
|
* we try to make booster invariant of data structures, but most cases, FMatrixS is what we wnat
|
|
*/
|
|
typedef InterfaceBooster<FMatrixS> IBooster;
|
|
};
|
|
};
|
|
|
|
namespace xgboost{
|
|
namespace booster{
|
|
/*!
|
|
* \brief create a gradient booster, given type of booster
|
|
* normally we use FMatrixS, by calling CreateBooster<FMatrixS>
|
|
* \param booster_type type of gradient booster, can be used to specify implements
|
|
* \tparam FMatrix input data type for booster
|
|
* \return the pointer to the gradient booster created
|
|
*/
|
|
template<typename FMatrix>
|
|
inline InterfaceBooster<FMatrix> *CreateBooster(int booster_type);
|
|
};
|
|
};
|
|
|
|
// this file includes the template implementations of all boosters
|
|
// the cost of using template is that the user can 'see' all the implementations, which is OK
|
|
// ignore implementations and focus on the interface:)
|
|
#include "xgboost-inl.hpp"
|
|
#endif
|