xgboost/tests/python-sycl/test_sycl_with_sklearn.py
Dmitry Razdoburdin bba6aa74fb
[SYCL] Fix for sycl support with sklearn estimators (#10806)
---------

Co-authored-by: Dmitry Razdoburdin <>
2024-09-09 14:14:07 +08:00

38 lines
1.1 KiB
Python

import xgboost as xgb
import pytest
import sys
import numpy as np
from xgboost import testing as tm
sys.path.append("tests/python")
import test_with_sklearn as twskl # noqa
pytestmark = pytest.mark.skipif(**tm.no_sklearn())
rng = np.random.RandomState(1994)
def test_sycl_binary_classification():
from sklearn.datasets import load_digits
from sklearn.model_selection import KFold
digits = load_digits(n_class=2)
y = digits["target"]
X = digits["data"]
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier):
for train_index, test_index in kf.split(X, y):
xgb_model = cls(random_state=42, device="sycl", n_estimators=4).fit(
X[train_index], y[train_index]
)
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(
1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]
) / float(len(preds))
print(preds)
print(labels)
print(err)
assert err < 0.1