xgboost/src/metric/elementwise_metric.cc
2017-02-09 09:32:06 -08:00

226 lines
7.1 KiB
C++

/*!
* Copyright 2015 by Contributors
* \file elementwise_metric.cc
* \brief evaluation metrics for elementwise binary or regression.
* \author Kailong Chen, Tianqi Chen
*/
#include <xgboost/metric.h>
#include <dmlc/registry.h>
#include <cmath>
#include "../common/math.h"
#include "../common/sync.h"
namespace xgboost {
namespace metric {
// tag the this file, used by force static link later.
DMLC_REGISTRY_FILE_TAG(elementwise_metric);
/*!
* \brief base class of element-wise evaluation
* \tparam Derived the name of subclass
*/
template<typename Derived>
struct EvalEWiseBase : public Metric {
bst_float Eval(const std::vector<bst_float>& preds,
const MetaInfo& info,
bool distributed) const override {
CHECK_NE(info.labels.size(), 0) << "label set cannot be empty";
CHECK_EQ(preds.size(), info.labels.size())
<< "label and prediction size not match, "
<< "hint: use merror or mlogloss for multi-class classification";
const omp_ulong ndata = static_cast<omp_ulong>(info.labels.size());
double sum = 0.0, wsum = 0.0;
#pragma omp parallel for reduction(+: sum, wsum) schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) {
const bst_float wt = info.GetWeight(i);
sum += static_cast<const Derived*>(this)->EvalRow(info.labels[i], preds[i]) * wt;
wsum += wt;
}
double dat[2]; dat[0] = sum, dat[1] = wsum;
if (distributed) {
rabit::Allreduce<rabit::op::Sum>(dat, 2);
}
return Derived::GetFinal(dat[0], dat[1]);
}
/*!
* \brief to be implemented by subclass,
* get evaluation result from one row
* \param label label of current instance
* \param pred prediction value of current instance
*/
inline bst_float EvalRow(bst_float label, bst_float pred) const;
/*!
* \brief to be overridden by subclass, final transformation
* \param esum the sum statistics returned by EvalRow
* \param wsum sum of weight
*/
inline static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
};
struct EvalRMSE : public EvalEWiseBase<EvalRMSE> {
const char *Name() const override {
return "rmse";
}
inline bst_float EvalRow(bst_float label, bst_float pred) const {
bst_float diff = label - pred;
return diff * diff;
}
inline static bst_float GetFinal(bst_float esum, bst_float wsum) {
return std::sqrt(esum / wsum);
}
};
struct EvalMAE : public EvalEWiseBase<EvalMAE> {
const char *Name() const override {
return "mae";
}
inline bst_float EvalRow(bst_float label, bst_float pred) const {
return std::abs(label - pred);
}
};
struct EvalLogLoss : public EvalEWiseBase<EvalLogLoss> {
const char *Name() const override {
return "logloss";
}
inline bst_float EvalRow(bst_float y, bst_float py) const {
const bst_float eps = 1e-16f;
const bst_float pneg = 1.0f - py;
if (py < eps) {
return -y * std::log(eps) - (1.0f - y) * std::log(1.0f - eps);
} else if (pneg < eps) {
return -y * std::log(1.0f - eps) - (1.0f - y) * std::log(eps);
} else {
return -y * std::log(py) - (1.0f - y) * std::log(pneg);
}
}
};
struct EvalError : public EvalEWiseBase<EvalError> {
explicit EvalError(const char* param) {
if (param != nullptr) {
std::ostringstream os;
os << "error";
CHECK_EQ(sscanf(param, "%f", &threshold_), 1)
<< "unable to parse the threshold value for the error metric";
if (threshold_ != 0.5f) os << '@' << threshold_;
name_ = os.str();
} else {
threshold_ = 0.5f;
name_ = "error";
}
}
const char *Name() const override {
return name_.c_str();
}
inline bst_float EvalRow(bst_float label, bst_float pred) const {
// assume label is in [0,1]
return pred > threshold_ ? 1.0f - label : label;
}
protected:
bst_float threshold_;
std::string name_;
};
struct EvalPoissonNegLogLik : public EvalEWiseBase<EvalPoissonNegLogLik> {
const char *Name() const override {
return "poisson-nloglik";
}
inline bst_float EvalRow(bst_float y, bst_float py) const {
const bst_float eps = 1e-16f;
if (py < eps) py = eps;
return common::LogGamma(y + 1.0f) + py - std::log(py) * y;
}
};
struct EvalGammaDeviance : public EvalEWiseBase<EvalGammaDeviance> {
const char *Name() const override {
return "gamma-deviance";
}
inline bst_float EvalRow(bst_float label, bst_float pred) const {
bst_float epsilon = 1.0e-9;
bst_float tmp = label / (pred + epsilon);
return tmp - std::log(tmp) - 1;
}
inline static bst_float GetFinal(bst_float esum, bst_float wsum) {
return 2 * esum;
}
};
struct EvalGammaNLogLik: public EvalEWiseBase<EvalGammaNLogLik> {
const char *Name() const override {
return "gamma-nloglik";
}
inline bst_float EvalRow(bst_float y, bst_float py) const {
bst_float psi = 1.0;
bst_float theta = -1. / py;
bst_float a = psi;
bst_float b = -std::log(-theta);
bst_float c = 1. / psi * std::log(y/psi) - std::log(y) - common::LogGamma(1. / psi);
return -((y * theta - b) / a + c);
}
};
struct EvalTweedieNLogLik: public EvalEWiseBase<EvalTweedieNLogLik> {
explicit EvalTweedieNLogLik(const char* param) {
CHECK(param != nullptr)
<< "tweedie-nloglik must be in format tweedie-nloglik@rho";
rho_ = atof(param);
CHECK(rho_ < 2 && rho_ >= 1)
<< "tweedie variance power must be in interval [1, 2)";
std::ostringstream os;
os << "tweedie-nloglik@" << rho_;
name_ = os.str();
}
const char *Name() const override {
return name_.c_str();
}
inline bst_float EvalRow(bst_float y, bst_float p) const {
bst_float a = y * std::exp((1 - rho_) * std::log(p)) / (1 - rho_);
bst_float b = std::exp((2 - rho_) * std::log(p)) / (2 - rho_);
return -a + b;
}
protected:
std::string name_;
bst_float rho_;
};
XGBOOST_REGISTER_METRIC(RMSE, "rmse")
.describe("Rooted mean square error.")
.set_body([](const char* param) { return new EvalRMSE(); });
XGBOOST_REGISTER_METRIC(MAE, "mae")
.describe("Mean absolute error.")
.set_body([](const char* param) { return new EvalMAE(); });
XGBOOST_REGISTER_METRIC(LogLoss, "logloss")
.describe("Negative loglikelihood for logistic regression.")
.set_body([](const char* param) { return new EvalLogLoss(); });
XGBOOST_REGISTER_METRIC(Error, "error")
.describe("Binary classification error.")
.set_body([](const char* param) { return new EvalError(param); });
XGBOOST_REGISTER_METRIC(PossionNegLoglik, "poisson-nloglik")
.describe("Negative loglikelihood for poisson regression.")
.set_body([](const char* param) { return new EvalPoissonNegLogLik(); });
XGBOOST_REGISTER_METRIC(GammaDeviance, "gamma-deviance")
.describe("Residual deviance for gamma regression.")
.set_body([](const char* param) { return new EvalGammaDeviance(); });
XGBOOST_REGISTER_METRIC(GammaNLogLik, "gamma-nloglik")
.describe("Negative log-likelihood for gamma regression.")
.set_body([](const char* param) { return new EvalGammaNLogLik(); });
XGBOOST_REGISTER_METRIC(TweedieNLogLik, "tweedie-nloglik")
.describe("tweedie-nloglik@rho for tweedie regression.")
.set_body([](const char* param) {
return new EvalTweedieNLogLik(param);
});
} // namespace metric
} // namespace xgboost