xgboost/demo/regression/machine.conf
2014-08-26 18:06:22 -07:00

31 lines
967 B
Plaintext

# General Parameters, see comment for each definition
# choose the tree booster, can also change to gblinear
booster = gbtree
# this is the only difference with classification, use reg:linear to do linear classification
# when labels are in [0,1] we can also use reg:logistic
objective = reg:linear
# Tree Booster Parameters
# step size shrinkage
eta = 1.0
# minimum loss reduction required to make a further partition
gamma = 1.0
# minimum sum of instance weight(hessian) needed in a child
min_child_weight = 1
# maximum depth of a tree
max_depth = 3
# Task parameters
# the number of round to do boosting
num_round = 2
# 0 means do not save any model except the final round model
save_period = 0
# The path of training data
data = "machine.txt.train"
# The path of validation data, used to monitor training process, here [test] sets name of the validation set
eval[test] = "machine.txt.test"
# The path of test data
test:data = "machine.txt.test"