xgboost/subtree/rabit/tracker/rabit_hadoop_streaming.py

166 lines
8.2 KiB
Python
Executable File

#!/usr/bin/python
"""
Deprecated
This is a script to submit rabit job using hadoop streaming.
It will submit the rabit process as mappers of MapReduce.
This script is deprecated, it is highly recommended to use rabit_yarn.py instead
"""
import argparse
import sys
import os
import time
import subprocess
import warnings
import rabit_tracker as tracker
WRAPPER_PATH = os.path.dirname(__file__) + '/../wrapper'
#!!! Set path to hadoop and hadoop streaming jar here
hadoop_binary = 'hadoop'
hadoop_streaming_jar = None
# code
hadoop_home = os.getenv('HADOOP_HOME')
if hadoop_home != None:
if hadoop_binary == None:
hadoop_binary = hadoop_home + '/bin/hadoop'
assert os.path.exists(hadoop_binary), "HADOOP_HOME does not contain the hadoop binary"
if hadoop_streaming_jar == None:
hadoop_streaming_jar = hadoop_home + '/lib/hadoop-streaming.jar'
assert os.path.exists(hadoop_streaming_jar), "HADOOP_HOME does not contain the hadoop streaming jar"
if hadoop_binary == None or hadoop_streaming_jar == None:
warnings.warn('Warning: Cannot auto-detect path to hadoop or hadoop-streaming jar\n'\
'\tneed to set them via arguments -hs and -hb\n'\
'\tTo enable auto-detection, you can set enviroment variable HADOOP_HOME'\
', or modify rabit_hadoop.py line 16', stacklevel = 2)
parser = argparse.ArgumentParser(description='Rabit script to submit rabit jobs using Hadoop Streaming.'\
'It is Highly recommended to use rabit_yarn.py instead')
parser.add_argument('-n', '--nworker', required=True, type=int,
help = 'number of worker proccess to be launched')
parser.add_argument('-hip', '--host_ip', default='auto', type=str,
help = 'host IP address if cannot be automatically guessed, specify the IP of submission machine')
parser.add_argument('-i', '--input', required=True,
help = 'input path in HDFS')
parser.add_argument('-o', '--output', required=True,
help = 'output path in HDFS')
parser.add_argument('-v', '--verbose', default=0, choices=[0, 1], type=int,
help = 'print more messages into the console')
parser.add_argument('-ac', '--auto_file_cache', default=1, choices=[0, 1], type=int,
help = 'whether automatically cache the files in the command to hadoop localfile, this is on by default')
parser.add_argument('-f', '--files', default = [], action='append',
help = 'the cached file list in mapreduce,'\
' the submission script will automatically cache all the files which appears in command'\
' This will also cause rewritten of all the file names in the command to current path,'\
' for example `../../kmeans ../kmeans.conf` will be rewritten to `./kmeans kmeans.conf`'\
' because the two files are cached to running folder.'\
' You may need this option to cache additional files.'\
' You can also use it to manually cache files when auto_file_cache is off')
parser.add_argument('--jobname', default='auto', help = 'customize jobname in tracker')
parser.add_argument('--timeout', default=600000000, type=int,
help = 'timeout (in million seconds) of each mapper job, automatically set to a very long time,'\
'normally you do not need to set this ')
parser.add_argument('--vcores', default = -1, type=int,
help = 'number of vcpores to request in each mapper, set it if each rabit job is multi-threaded')
parser.add_argument('-mem', '--memory_mb', default=-1, type=int,
help = 'maximum memory used by the process. Guide: set it large (near mapred.cluster.max.map.memory.mb)'\
'if you are running multi-threading rabit,'\
'so that each node can occupy all the mapper slots in a machine for maximum performance')
if hadoop_binary == None:
parser.add_argument('-hb', '--hadoop_binary', required = True,
help="path to hadoop binary file")
else:
parser.add_argument('-hb', '--hadoop_binary', default = hadoop_binary,
help="path to hadoop binary file")
if hadoop_streaming_jar == None:
parser.add_argument('-hs', '--hadoop_streaming_jar', required = True,
help='path to hadoop streamimg jar file')
else:
parser.add_argument('-hs', '--hadoop_streaming_jar', default = hadoop_streaming_jar,
help='path to hadoop streamimg jar file')
parser.add_argument('command', nargs='+',
help = 'command for rabit program')
args = parser.parse_args()
if args.jobname == 'auto':
args.jobname = ('Rabit[nworker=%d]:' % args.nworker) + args.command[0].split('/')[-1];
# detech hadoop version
(out, err) = subprocess.Popen('%s version' % args.hadoop_binary, shell = True, stdout=subprocess.PIPE).communicate()
out = out.split('\n')[0].split()
assert out[0] == 'Hadoop', 'cannot parse hadoop version string'
hadoop_version = out[1].split('.')
use_yarn = int(hadoop_version[0]) >= 2
if use_yarn:
warnings.warn('It is highly recommended to use rabit_yarn.py to submit jobs to yarn instead', stacklevel = 2)
print 'Current Hadoop Version is %s' % out[1]
def hadoop_streaming(nworker, worker_args, worker_envs, use_yarn):
worker_envs['CLASSPATH'] = '`$HADOOP_HOME/bin/hadoop classpath --glob` '
worker_envs['LD_LIBRARY_PATH'] = '{LD_LIBRARY_PATH}:$HADOOP_HDFS_HOME/lib/native:$JAVA_HOME/jre/lib/amd64/server'
fset = set()
if args.auto_file_cache:
for i in range(len(args.command)):
f = args.command[i]
if os.path.exists(f):
fset.add(f)
if i == 0:
args.command[i] = './' + args.command[i].split('/')[-1]
else:
args.command[i] = args.command[i].split('/')[-1]
if args.command[0].endswith('.py'):
flst = [WRAPPER_PATH + '/rabit.py',
WRAPPER_PATH + '/librabit_wrapper.so',
WRAPPER_PATH + '/librabit_wrapper_mock.so']
for f in flst:
if os.path.exists(f):
fset.add(f)
kmap = {}
kmap['env'] = 'mapred.child.env'
# setup keymaps
if use_yarn:
kmap['nworker'] = 'mapreduce.job.maps'
kmap['jobname'] = 'mapreduce.job.name'
kmap['nthread'] = 'mapreduce.map.cpu.vcores'
kmap['timeout'] = 'mapreduce.task.timeout'
kmap['memory_mb'] = 'mapreduce.map.memory.mb'
else:
kmap['nworker'] = 'mapred.map.tasks'
kmap['jobname'] = 'mapred.job.name'
kmap['nthread'] = None
kmap['timeout'] = 'mapred.task.timeout'
kmap['memory_mb'] = 'mapred.job.map.memory.mb'
cmd = '%s jar %s' % (args.hadoop_binary, args.hadoop_streaming_jar)
cmd += ' -D%s=%d' % (kmap['nworker'], nworker)
cmd += ' -D%s=%s' % (kmap['jobname'], args.jobname)
envstr = ','.join('%s=%s' % (k, str(v)) for k, v in worker_envs.items())
cmd += ' -D%s=\"%s\"' % (kmap['env'], envstr)
if args.vcores != -1:
if kmap['nthread'] is None:
warnings.warn('nthread can only be set in Yarn(Hadoop version greater than 2.0),'\
'it is recommended to use Yarn to submit rabit jobs', stacklevel = 2)
else:
cmd += ' -D%s=%d' % (kmap['nthread'], args.vcores)
cmd += ' -D%s=%d' % (kmap['timeout'], args.timeout)
if args.memory_mb != -1:
cmd += ' -D%s=%d' % (kmap['timeout'], args.timeout)
cmd += ' -input %s -output %s' % (args.input, args.output)
cmd += ' -mapper \"%s\" -reducer \"/bin/cat\" ' % (' '.join(args.command + worker_args))
if args.files != None:
for flst in args.files:
for f in flst.split('#'):
fset.add(f)
for f in fset:
cmd += ' -file %s' % f
print cmd
subprocess.check_call(cmd, shell = True)
fun_submit = lambda nworker, worker_args, worker_envs: hadoop_streaming(nworker, worker_args, worker_envs, int(hadoop_version[0]) >= 2)
tracker.submit(args.nworker, [], fun_submit = fun_submit, verbose = args.verbose, hostIP = args.host_ip)