209 lines
6.3 KiB
C++
209 lines
6.3 KiB
C++
/*!
|
|
* Copyright 2018-2024 by Contributors
|
|
*/
|
|
|
|
#ifndef PLUGIN_SYCL_TREE_SPLIT_EVALUATOR_H_
|
|
#define PLUGIN_SYCL_TREE_SPLIT_EVALUATOR_H_
|
|
|
|
#include <dmlc/registry.h>
|
|
#include <xgboost/base.h>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include <limits>
|
|
|
|
#include "param.h"
|
|
#include "../data.h"
|
|
|
|
#include "xgboost/tree_model.h"
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/context.h"
|
|
#include "../../src/common/transform.h"
|
|
#include "../../src/common/math.h"
|
|
#include "../../src/tree/param.h"
|
|
|
|
#include <CL/sycl.hpp>
|
|
|
|
namespace xgboost {
|
|
namespace sycl {
|
|
namespace tree {
|
|
|
|
/*! \brief SYCL implementation of TreeEvaluator, with USM memory for temporary buffer to access on device.
|
|
* It also contains own implementation of SplitEvaluator for device compilation, because some of the
|
|
functions from the original SplitEvaluator are currently not supported
|
|
*/
|
|
|
|
template<typename GradType>
|
|
class TreeEvaluator {
|
|
// hist and exact use parent id to calculate constraints.
|
|
static constexpr bst_node_t kRootParentId =
|
|
(-1 & static_cast<bst_node_t>((1U << 31) - 1));
|
|
|
|
USMVector<GradType> lower_bounds_;
|
|
USMVector<GradType> upper_bounds_;
|
|
USMVector<int> monotone_;
|
|
TrainParam param_;
|
|
::sycl::queue* qu_;
|
|
bool has_constraint_;
|
|
|
|
public:
|
|
void Reset(::sycl::queue* qu, xgboost::tree::TrainParam const& p, bst_feature_t n_features) {
|
|
qu_ = qu;
|
|
|
|
has_constraint_ = false;
|
|
for (const auto& constraint : p.monotone_constraints) {
|
|
if (constraint != 0) {
|
|
has_constraint_ = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (has_constraint_) {
|
|
monotone_.Resize(qu_, n_features, 0);
|
|
qu_->memcpy(monotone_.Data(), p.monotone_constraints.data(),
|
|
sizeof(int) * p.monotone_constraints.size());
|
|
qu_->wait();
|
|
|
|
lower_bounds_.Resize(qu_, p.MaxNodes(), std::numeric_limits<GradType>::lowest());
|
|
upper_bounds_.Resize(qu_, p.MaxNodes(), std::numeric_limits<GradType>::max());
|
|
}
|
|
param_ = TrainParam(p);
|
|
}
|
|
|
|
bool HasConstraint() const {
|
|
return has_constraint_;
|
|
}
|
|
|
|
TreeEvaluator(::sycl::queue* qu, xgboost::tree::TrainParam const& p, bst_feature_t n_features) {
|
|
Reset(qu, p, n_features);
|
|
}
|
|
|
|
struct SplitEvaluator {
|
|
const int* constraints;
|
|
const GradType* lower;
|
|
const GradType* upper;
|
|
bool has_constraint;
|
|
TrainParam param;
|
|
|
|
GradType CalcSplitGain(bst_node_t nidx,
|
|
bst_feature_t fidx,
|
|
const GradStats<GradType>& left,
|
|
const GradStats<GradType>& right) const {
|
|
const GradType negative_infinity = -std::numeric_limits<GradType>::infinity();
|
|
GradType wleft = this->CalcWeight(nidx, left);
|
|
GradType wright = this->CalcWeight(nidx, right);
|
|
|
|
GradType gain = this->CalcGainGivenWeight(nidx, left, wleft) +
|
|
this->CalcGainGivenWeight(nidx, right, wright);
|
|
if (!has_constraint) {
|
|
return gain;
|
|
}
|
|
|
|
int constraint = constraints[fidx];
|
|
if (constraint == 0) {
|
|
return gain;
|
|
} else if (constraint > 0) {
|
|
return wleft <= wright ? gain : negative_infinity;
|
|
} else {
|
|
return wleft >= wright ? gain : negative_infinity;
|
|
}
|
|
}
|
|
|
|
inline static GradType ThresholdL1(GradType w, float alpha) {
|
|
if (w > + alpha) {
|
|
return w - alpha;
|
|
}
|
|
if (w < - alpha) {
|
|
return w + alpha;
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
inline GradType CalcWeight(GradType sum_grad, GradType sum_hess) const {
|
|
if (sum_hess < param.min_child_weight || sum_hess <= 0.0) {
|
|
return 0.0;
|
|
}
|
|
GradType dw = -this->ThresholdL1(sum_grad, param.reg_alpha) / (sum_hess + param.reg_lambda);
|
|
if (param.max_delta_step != 0.0f && std::abs(dw) > param.max_delta_step) {
|
|
dw = ::sycl::copysign((GradType)param.max_delta_step, dw);
|
|
}
|
|
return dw;
|
|
}
|
|
|
|
inline GradType CalcWeight(bst_node_t nodeid, const GradStats<GradType>& stats) const {
|
|
GradType w = this->CalcWeight(stats.GetGrad(), stats.GetHess());
|
|
if (!has_constraint) {
|
|
return w;
|
|
}
|
|
|
|
if (nodeid == kRootParentId) {
|
|
return w;
|
|
} else if (w < lower[nodeid]) {
|
|
return lower[nodeid];
|
|
} else if (w > upper[nodeid]) {
|
|
return upper[nodeid];
|
|
} else {
|
|
return w;
|
|
}
|
|
}
|
|
|
|
inline GradType CalcGainGivenWeight(GradType sum_grad, GradType sum_hess, GradType w) const {
|
|
return -(2.0f * sum_grad * w + (sum_hess + param.reg_lambda) * xgboost::common::Sqr(w));
|
|
}
|
|
|
|
inline GradType CalcGainGivenWeight(bst_node_t nid, const GradStats<GradType>& stats,
|
|
GradType w) const {
|
|
if (stats.GetHess() <= 0) {
|
|
return .0f;
|
|
}
|
|
// Avoiding tree::CalcGainGivenWeight can significantly reduce avg floating point error.
|
|
if (param.max_delta_step == 0.0f && has_constraint == false) {
|
|
return xgboost::common::Sqr(this->ThresholdL1(stats.GetGrad(), param.reg_alpha)) /
|
|
(stats.GetHess() + param.reg_lambda);
|
|
}
|
|
return this->CalcGainGivenWeight(stats.GetGrad(), stats.GetHess(), w);
|
|
}
|
|
|
|
GradType CalcGain(bst_node_t nid, const GradStats<GradType>& stats) const {
|
|
return this->CalcGainGivenWeight(nid, stats, this->CalcWeight(nid, stats));
|
|
}
|
|
};
|
|
|
|
public:
|
|
/* Get a view to the evaluator that can be passed down to device. */
|
|
auto GetEvaluator() const {
|
|
return SplitEvaluator{monotone_.DataConst(),
|
|
lower_bounds_.DataConst(),
|
|
upper_bounds_.DataConst(),
|
|
has_constraint_,
|
|
param_};
|
|
}
|
|
|
|
void AddSplit(bst_node_t nodeid, bst_node_t leftid, bst_node_t rightid,
|
|
bst_feature_t f, GradType left_weight, GradType right_weight) {
|
|
if (!has_constraint_) {
|
|
return;
|
|
}
|
|
|
|
lower_bounds_[leftid] = lower_bounds_[nodeid];
|
|
upper_bounds_[leftid] = upper_bounds_[nodeid];
|
|
|
|
lower_bounds_[rightid] = lower_bounds_[nodeid];
|
|
upper_bounds_[rightid] = upper_bounds_[nodeid];
|
|
int32_t c = monotone_[f];
|
|
GradType mid = (left_weight + right_weight) / 2;
|
|
|
|
if (c < 0) {
|
|
lower_bounds_[leftid] = mid;
|
|
upper_bounds_[rightid] = mid;
|
|
} else if (c > 0) {
|
|
upper_bounds_[leftid] = mid;
|
|
lower_bounds_[rightid] = mid;
|
|
}
|
|
}
|
|
};
|
|
} // namespace tree
|
|
} // namespace sycl
|
|
} // namespace xgboost
|
|
|
|
#endif // PLUGIN_SYCL_TREE_SPLIT_EVALUATOR_H_
|