xgboost/tests/python-gpu/test_gpu_training_continuation.py
Philip Hyunsu Cho 9c9070aea2
Use pytest conventions consistently (#6337)
* Do not derive from unittest.TestCase (not needed for pytest)

* assertRaises -> pytest.raises

* Simplify test_empty_dmatrix with test parametrization

* setUpClass -> setup_class, tearDownClass -> teardown_class

* Don't import unittest; import pytest

* Use plain assert

* Use parametrized tests in more places

* Fix test_gpu_with_sklearn.py

* Put back run_empty_dmatrix_reg / run_empty_dmatrix_cls

* Fix test_eta_decay_gpu_hist

* Add parametrized tests for monotone constraints

* Fix test names

* Remove test parametrization

* Revise test_slice to be not flaky
2020-11-19 17:00:15 -08:00

57 lines
2.1 KiB
Python

import numpy as np
import xgboost as xgb
import json
rng = np.random.RandomState(1994)
class TestGPUTrainingContinuation:
def run_training_continuation(self, use_json):
kRows = 64
kCols = 32
X = np.random.randn(kRows, kCols)
y = np.random.randn(kRows)
dtrain = xgb.DMatrix(X, y)
params = {'tree_method': 'gpu_hist', 'max_depth': '2',
'gamma': '0.1', 'alpha': '0.01',
'enable_experimental_json_serialization': use_json}
bst_0 = xgb.train(params, dtrain, num_boost_round=64)
dump_0 = bst_0.get_dump(dump_format='json')
bst_1 = xgb.train(params, dtrain, num_boost_round=32)
bst_1 = xgb.train(params, dtrain, num_boost_round=32, xgb_model=bst_1)
dump_1 = bst_1.get_dump(dump_format='json')
def recursive_compare(obj_0, obj_1):
if isinstance(obj_0, float):
assert np.isclose(obj_0, obj_1, atol=1e-6)
elif isinstance(obj_0, str):
assert obj_0 == obj_1
elif isinstance(obj_0, int):
assert obj_0 == obj_1
elif isinstance(obj_0, dict):
keys_0 = list(obj_0.keys())
keys_1 = list(obj_1.keys())
values_0 = list(obj_0.values())
values_1 = list(obj_1.values())
for i in range(len(obj_0.items())):
assert keys_0[i] == keys_1[i]
if list(obj_0.keys())[i] != 'missing':
recursive_compare(values_0[i],
values_1[i])
else:
for i in range(len(obj_0)):
recursive_compare(obj_0[i], obj_1[i])
assert len(dump_0) == len(dump_1)
for i in range(len(dump_0)):
obj_0 = json.loads(dump_0[i])
obj_1 = json.loads(dump_1[i])
recursive_compare(obj_0, obj_1)
def test_gpu_training_continuation_binary(self):
self.run_training_continuation(False)
def test_gpu_training_continuation_json(self):
self.run_training_continuation(True)