xgboost/src/tree/updater_gpu_hist.cu
Rory Mitchell 07ff52d54c
Dynamically allocate GPU histogram memory (#3519)
* Expand histogram memory dynamically to prevent large allocations for large tree depths (e.g. > 15)

* Remove GPU memory allocation messages. These are misleading as a large number of allocations are now dynamic.

* Fix appveyor R test
2018-07-28 21:22:41 +12:00

1174 lines
42 KiB
Plaintext

/*!
* Copyright 2017 XGBoost contributors
*/
#include <thrust/copy.h>
#include <thrust/functional.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/reduce.h>
#include <thrust/sequence.h>
#include <xgboost/tree_updater.h>
#include <algorithm>
#include <cmath>
#include <memory>
#include <queue>
#include <utility>
#include <vector>
#include "../common/compressed_iterator.h"
#include "../common/device_helpers.cuh"
#include "../common/hist_util.h"
#include "../common/host_device_vector.h"
#include "../common/timer.h"
#include "param.h"
#include "updater_gpu_common.cuh"
namespace xgboost {
namespace tree {
DMLC_REGISTRY_FILE_TAG(updater_gpu_hist);
using GradientPairSumT = GradientPairPrecise;
template <int BLOCK_THREADS, typename ReduceT, typename TempStorageT>
__device__ GradientPairSumT ReduceFeature(const GradientPairSumT* begin,
const GradientPairSumT* end,
TempStorageT* temp_storage) {
__shared__ cub::Uninitialized<GradientPairSumT> uninitialized_sum;
GradientPairSumT& shared_sum = uninitialized_sum.Alias();
GradientPairSumT local_sum = GradientPairSumT();
for (auto itr = begin; itr < end; itr += BLOCK_THREADS) {
bool thread_active = itr + threadIdx.x < end;
// Scan histogram
GradientPairSumT bin = thread_active ? *(itr + threadIdx.x) : GradientPairSumT();
local_sum += bin;
}
local_sum = ReduceT(temp_storage->sum_reduce).Reduce(local_sum, cub::Sum());
if (threadIdx.x == 0) {
shared_sum = local_sum;
}
__syncthreads();
return shared_sum;
}
template <int BLOCK_THREADS, typename ReduceT, typename scan_t,
typename max_ReduceT, typename TempStorageT>
__device__ void EvaluateFeature(int fidx, const GradientPairSumT* hist,
const int* feature_segments, float min_fvalue,
const float* gidx_fvalue_map,
DeviceSplitCandidate* best_split,
const DeviceNodeStats& node,
const GPUTrainingParam& param,
TempStorageT* temp_storage, int constraint,
const ValueConstraint& value_constraint) {
int gidx_begin = feature_segments[fidx];
int gidx_end = feature_segments[fidx + 1];
GradientPairSumT feature_sum = ReduceFeature<BLOCK_THREADS, ReduceT>(
hist + gidx_begin, hist + gidx_end, temp_storage);
auto prefix_op = SumCallbackOp<GradientPairSumT>();
for (int scan_begin = gidx_begin; scan_begin < gidx_end;
scan_begin += BLOCK_THREADS) {
bool thread_active = scan_begin + threadIdx.x < gidx_end;
GradientPairSumT bin =
thread_active ? hist[scan_begin + threadIdx.x] : GradientPairSumT();
scan_t(temp_storage->scan).ExclusiveScan(bin, bin, cub::Sum(), prefix_op);
// Calculate gain
GradientPairSumT parent_sum = GradientPairSumT(node.sum_gradients);
GradientPairSumT missing = parent_sum - feature_sum;
bool missing_left = true;
const float null_gain = -FLT_MAX;
float gain = null_gain;
if (thread_active) {
gain = LossChangeMissing(bin, missing, parent_sum, node.root_gain, param,
constraint, value_constraint, missing_left);
}
__syncthreads();
// Find thread with best gain
cub::KeyValuePair<int, float> tuple(threadIdx.x, gain);
cub::KeyValuePair<int, float> best =
max_ReduceT(temp_storage->max_reduce).Reduce(tuple, cub::ArgMax());
__shared__ cub::KeyValuePair<int, float> block_max;
if (threadIdx.x == 0) {
block_max = best;
}
__syncthreads();
// Best thread updates split
if (threadIdx.x == block_max.key) {
int gidx = scan_begin + threadIdx.x;
float fvalue =
gidx == gidx_begin ? min_fvalue : gidx_fvalue_map[gidx - 1];
GradientPairSumT left = missing_left ? bin + missing : bin;
GradientPairSumT right = parent_sum - left;
best_split->Update(gain, missing_left ? kLeftDir : kRightDir, fvalue, fidx,
GradientPair(left), GradientPair(right), param);
}
__syncthreads();
}
}
template <int BLOCK_THREADS>
__global__ void evaluate_split_kernel(
const GradientPairSumT* d_hist, int nidx, uint64_t n_features,
DeviceNodeStats nodes, const int* d_feature_segments,
const float* d_fidx_min_map, const float* d_gidx_fvalue_map,
GPUTrainingParam gpu_param, DeviceSplitCandidate* d_split,
ValueConstraint value_constraint, int* d_monotonic_constraints) {
typedef cub::KeyValuePair<int, float> ArgMaxT;
typedef cub::BlockScan<GradientPairSumT, BLOCK_THREADS, cub::BLOCK_SCAN_WARP_SCANS>
BlockScanT;
typedef cub::BlockReduce<ArgMaxT, BLOCK_THREADS> MaxReduceT;
typedef cub::BlockReduce<GradientPairSumT, BLOCK_THREADS> SumReduceT;
union TempStorage {
typename BlockScanT::TempStorage scan;
typename MaxReduceT::TempStorage max_reduce;
typename SumReduceT::TempStorage sum_reduce;
};
__shared__ cub::Uninitialized<DeviceSplitCandidate> uninitialized_split;
DeviceSplitCandidate& best_split = uninitialized_split.Alias();
__shared__ TempStorage temp_storage;
if (threadIdx.x == 0) {
best_split = DeviceSplitCandidate();
}
__syncthreads();
auto fidx = blockIdx.x;
auto constraint = d_monotonic_constraints[fidx];
EvaluateFeature<BLOCK_THREADS, SumReduceT, BlockScanT, MaxReduceT>(
fidx, d_hist, d_feature_segments, d_fidx_min_map[fidx], d_gidx_fvalue_map,
&best_split, nodes, gpu_param, &temp_storage, constraint,
value_constraint);
__syncthreads();
if (threadIdx.x == 0) {
// Record best loss
d_split[fidx] = best_split;
}
}
// Find a gidx value for a given feature otherwise return -1 if not found
template <typename GidxIterT>
__device__ int BinarySearchRow(bst_uint begin, bst_uint end, GidxIterT data,
int fidx_begin, int fidx_end) {
bst_uint previous_middle = UINT32_MAX;
while (end != begin) {
auto middle = begin + (end - begin) / 2;
if (middle == previous_middle) {
break;
}
previous_middle = middle;
auto gidx = data[middle];
if (gidx >= fidx_begin && gidx < fidx_end) {
return gidx;
} else if (gidx < fidx_begin) {
begin = middle;
} else {
end = middle;
}
}
// Value is missing
return -1;
}
/**
* \struct DeviceHistogram
*
* \summary Data storage for node histograms on device. Automatically expands.
*
* \author Rory
* \date 28/07/2018
*/
struct DeviceHistogram {
std::map<int, size_t>
nidx_map; // Map nidx to starting index of its histogram
thrust::device_vector<GradientPairSumT> data;
int n_bins;
int device_idx;
void Init(int device_idx, int n_bins) {
this->n_bins = n_bins;
this->device_idx = device_idx;
}
void Reset() {
dh::safe_cuda(cudaSetDevice(device_idx));
thrust::fill(data.begin(), data.end(), GradientPairSumT());
}
/**
* \summary Return pointer to histogram memory for a given node. Be aware that this function
* may reallocate the underlying memory, invalidating previous pointers.
*
* \author Rory
* \date 28/07/2018
*
* \param nidx Tree node index.
*
* \return hist pointer.
*/
GradientPairSumT* GetHistPtr(int nidx) {
if (nidx_map.find(nidx) == nidx_map.end()) {
// Append new node histogram
nidx_map[nidx] = data.size();
dh::safe_cuda(cudaSetDevice(device_idx));
data.resize(data.size() + n_bins, GradientPairSumT());
}
return data.data().get() + nidx_map[nidx];
}
};
struct CalcWeightTrainParam {
float min_child_weight;
float reg_alpha;
float reg_lambda;
float max_delta_step;
float learning_rate;
XGBOOST_DEVICE explicit CalcWeightTrainParam(const TrainParam& p)
: min_child_weight(p.min_child_weight),
reg_alpha(p.reg_alpha),
reg_lambda(p.reg_lambda),
max_delta_step(p.max_delta_step),
learning_rate(p.learning_rate) {}
};
__global__ void compress_bin_ellpack_k
(common::CompressedBufferWriter wr, common::CompressedByteT* __restrict__ buffer,
const size_t* __restrict__ row_ptrs,
const Entry* __restrict__ entries,
const float* __restrict__ cuts, const size_t* __restrict__ cut_rows,
size_t base_row, size_t n_rows, size_t row_ptr_begin, size_t row_stride,
unsigned int null_gidx_value) {
size_t irow = threadIdx.x + size_t(blockIdx.x) * blockDim.x;
int ifeature = threadIdx.y + blockIdx.y * blockDim.y;
if (irow >= n_rows || ifeature >= row_stride)
return;
int row_size = static_cast<int>(row_ptrs[irow + 1] - row_ptrs[irow]);
unsigned int bin = null_gidx_value;
if (ifeature < row_size) {
Entry entry = entries[row_ptrs[irow] - row_ptr_begin + ifeature];
int feature = entry.index;
float fvalue = entry.fvalue;
const float *feature_cuts = &cuts[cut_rows[feature]];
int ncuts = cut_rows[feature + 1] - cut_rows[feature];
bin = dh::UpperBound(feature_cuts, ncuts, fvalue);
if (bin >= ncuts)
bin = ncuts - 1;
bin += cut_rows[feature];
}
wr.AtomicWriteSymbol(buffer, bin, (irow + base_row) * row_stride + ifeature);
}
__global__ void sharedMemHistKernel(size_t row_stride,
const bst_uint* d_ridx,
common::CompressedIterator<uint32_t> d_gidx,
int null_gidx_value,
GradientPairSumT* d_node_hist,
const GradientPair* d_gpair,
size_t segment_begin,
size_t n_elements) {
extern __shared__ char smem[];
GradientPairSumT* smem_arr = reinterpret_cast<GradientPairSumT*>(smem); // NOLINT
for (auto i : dh::BlockStrideRange(0, null_gidx_value)) {
smem_arr[i] = GradientPairSumT();
}
__syncthreads();
for (auto idx : dh::GridStrideRange(static_cast<size_t>(0), n_elements)) {
int ridx = d_ridx[idx / row_stride + segment_begin];
int gidx = d_gidx[ridx * row_stride + idx % row_stride];
if (gidx != null_gidx_value) {
AtomicAddGpair(smem_arr + gidx, d_gpair[ridx]);
}
}
__syncthreads();
for (auto i : dh::BlockStrideRange(0, null_gidx_value)) {
AtomicAddGpair(d_node_hist + i, smem_arr[i]);
}
}
// Manage memory for a single GPU
struct DeviceShard {
struct Segment {
size_t begin;
size_t end;
Segment() : begin(0), end(0) {}
Segment(size_t begin, size_t end) : begin(begin), end(end) {
CHECK_GE(end, begin);
}
size_t Size() const { return end - begin; }
};
int device_idx;
int normalised_device_idx; // Device index counting from param.gpu_id
dh::BulkAllocator<dh::MemoryType::kDevice> ba;
dh::DVec<common::CompressedByteT> gidx_buffer;
dh::DVec<GradientPair> gpair;
dh::DVec2<bst_uint> ridx; // Row index relative to this shard
dh::DVec2<int> position;
std::vector<Segment> ridx_segments;
dh::DVec<int> feature_segments;
dh::DVec<float> gidx_fvalue_map;
dh::DVec<float> min_fvalue;
dh::DVec<int> monotone_constraints;
dh::DVec<bst_float> prediction_cache;
std::vector<GradientPair> node_sum_gradients;
dh::DVec<GradientPair> node_sum_gradients_d;
thrust::device_vector<size_t> row_ptrs;
common::CompressedIterator<uint32_t> gidx;
size_t row_stride;
bst_uint row_begin_idx; // The row offset for this shard
bst_uint row_end_idx;
bst_uint n_rows;
int n_bins;
int null_gidx_value;
DeviceHistogram hist;
TrainParam param;
bool prediction_cache_initialised;
bool can_use_smem_atomics;
int64_t* tmp_pinned; // Small amount of staging memory
std::vector<cudaStream_t> streams;
dh::CubMemory temp_memory;
// TODO(canonizer): do add support multi-batch DMatrix here
DeviceShard(int device_idx, int normalised_device_idx,
bst_uint row_begin, bst_uint row_end, TrainParam param)
: device_idx(device_idx),
normalised_device_idx(normalised_device_idx),
row_begin_idx(row_begin),
row_end_idx(row_end),
row_stride(0),
n_rows(row_end - row_begin),
n_bins(0),
null_gidx_value(0),
param(param),
prediction_cache_initialised(false),
can_use_smem_atomics(false) {}
void InitRowPtrs(const SparsePage& row_batch) {
dh::safe_cuda(cudaSetDevice(device_idx));
row_ptrs.resize(n_rows + 1);
thrust::copy(row_batch.offset.data() + row_begin_idx,
row_batch.offset.data() + row_end_idx + 1,
row_ptrs.begin());
auto row_iter = row_ptrs.begin();
auto get_size = [=] __device__(size_t row) {
return row_iter[row + 1] - row_iter[row];
}; // NOLINT
auto counting = thrust::make_counting_iterator(size_t(0));
using TransformT = thrust::transform_iterator<decltype(get_size),
decltype(counting), size_t>;
TransformT row_size_iter = TransformT(counting, get_size);
row_stride = thrust::reduce(row_size_iter, row_size_iter + n_rows, 0,
thrust::maximum<size_t>());
}
void InitCompressedData(const common::HistCutMatrix& hmat, const SparsePage& row_batch) {
n_bins = hmat.row_ptr.back();
null_gidx_value = hmat.row_ptr.back();
// copy cuts to the GPU
dh::safe_cuda(cudaSetDevice(device_idx));
thrust::device_vector<float> cuts_d(hmat.cut);
thrust::device_vector<size_t> cut_row_ptrs_d(hmat.row_ptr);
// allocate compressed bin data
int num_symbols = n_bins + 1;
size_t compressed_size_bytes =
common::CompressedBufferWriter::CalculateBufferSize(row_stride * n_rows,
num_symbols);
CHECK(!(param.max_leaves == 0 && param.max_depth == 0))
<< "Max leaves and max depth cannot both be unconstrained for "
"gpu_hist.";
ba.Allocate(device_idx, param.silent, &gidx_buffer, compressed_size_bytes);
gidx_buffer.Fill(0);
int nbits = common::detail::SymbolBits(num_symbols);
// bin and compress entries in batches of rows
size_t gpu_batch_nrows = std::min
(dh::TotalMemory(device_idx) / (16 * row_stride * sizeof(Entry)),
static_cast<size_t>(n_rows));
thrust::device_vector<Entry> entries_d(gpu_batch_nrows * row_stride);
size_t gpu_nbatches = dh::DivRoundUp(n_rows, gpu_batch_nrows);
for (size_t gpu_batch = 0; gpu_batch < gpu_nbatches; ++gpu_batch) {
size_t batch_row_begin = gpu_batch * gpu_batch_nrows;
size_t batch_row_end = (gpu_batch + 1) * gpu_batch_nrows;
if (batch_row_end > n_rows) {
batch_row_end = n_rows;
}
size_t batch_nrows = batch_row_end - batch_row_begin;
size_t n_entries =
row_batch.offset[row_begin_idx + batch_row_end] -
row_batch.offset[row_begin_idx + batch_row_begin];
dh::safe_cuda
(cudaMemcpy
(entries_d.data().get(),
&row_batch.data[row_batch.offset[row_begin_idx + batch_row_begin]],
n_entries * sizeof(Entry), cudaMemcpyDefault));
dim3 block3(32, 8, 1);
dim3 grid3(dh::DivRoundUp(n_rows, block3.x),
dh::DivRoundUp(row_stride, block3.y), 1);
compress_bin_ellpack_k<<<grid3, block3>>>
(common::CompressedBufferWriter(num_symbols), gidx_buffer.Data(),
row_ptrs.data().get() + batch_row_begin,
entries_d.data().get(), cuts_d.data().get(), cut_row_ptrs_d.data().get(),
batch_row_begin, batch_nrows,
row_batch.offset[row_begin_idx + batch_row_begin],
row_stride, null_gidx_value);
dh::safe_cuda(cudaGetLastError());
dh::safe_cuda(cudaDeviceSynchronize());
}
// free the memory that is no longer needed
row_ptrs.resize(0);
row_ptrs.shrink_to_fit();
entries_d.resize(0);
entries_d.shrink_to_fit();
gidx = common::CompressedIterator<uint32_t>(gidx_buffer.Data(), num_symbols);
// allocate the rest
int max_nodes =
param.max_leaves > 0 ? param.max_leaves * 2 : MaxNodesDepth(param.max_depth);
ba.Allocate(device_idx, param.silent,
&gpair, n_rows, &ridx, n_rows, &position, n_rows,
&prediction_cache, n_rows, &node_sum_gradients_d, max_nodes,
&feature_segments, hmat.row_ptr.size(), &gidx_fvalue_map,
hmat.cut.size(), &min_fvalue, hmat.min_val.size(),
&monotone_constraints, param.monotone_constraints.size());
gidx_fvalue_map = hmat.cut;
min_fvalue = hmat.min_val;
feature_segments = hmat.row_ptr;
monotone_constraints = param.monotone_constraints;
node_sum_gradients.resize(max_nodes);
ridx_segments.resize(max_nodes);
// check if we can use shared memory for building histograms
// (assuming atleast we need 2 CTAs per SM to maintain decent latency hiding)
auto histogram_size = sizeof(GradientPairSumT) * null_gidx_value;
auto max_smem = dh::MaxSharedMemory(device_idx);
can_use_smem_atomics = histogram_size <= max_smem;
// Init histogram
hist.Init(device_idx, hmat.row_ptr.back());
dh::safe_cuda(cudaMallocHost(&tmp_pinned, sizeof(int64_t)));
}
~DeviceShard() {
for (auto& stream : streams) {
dh::safe_cuda(cudaStreamDestroy(stream));
}
dh::safe_cuda(cudaFreeHost(tmp_pinned));
}
// Get vector of at least n initialised streams
std::vector<cudaStream_t>& GetStreams(int n) {
if (n > streams.size()) {
for (auto& stream : streams) {
dh::safe_cuda(cudaStreamDestroy(stream));
}
streams.clear();
streams.resize(n);
for (auto& stream : streams) {
dh::safe_cuda(cudaStreamCreate(&stream));
}
}
return streams;
}
// Reset values for each update iteration
void Reset(HostDeviceVector<GradientPair>* dh_gpair) {
dh::safe_cuda(cudaSetDevice(device_idx));
position.CurrentDVec().Fill(0);
std::fill(node_sum_gradients.begin(), node_sum_gradients.end(),
GradientPair());
thrust::sequence(ridx.CurrentDVec().tbegin(), ridx.CurrentDVec().tend());
std::fill(ridx_segments.begin(), ridx_segments.end(), Segment(0, 0));
ridx_segments.front() = Segment(0, ridx.Size());
this->gpair.copy(dh_gpair->tbegin(device_idx), dh_gpair->tend(device_idx));
SubsampleGradientPair(&gpair, param.subsample, row_begin_idx);
hist.Reset();
}
void BuildHistUsingGlobalMem(int nidx) {
auto segment = ridx_segments[nidx];
auto d_node_hist = hist.GetHistPtr(nidx);
auto d_gidx = gidx;
auto d_ridx = ridx.Current();
auto d_gpair = gpair.Data();
auto row_stride = this->row_stride;
auto null_gidx_value = this->null_gidx_value;
auto n_elements = segment.Size() * row_stride;
dh::LaunchN(device_idx, n_elements, [=] __device__(size_t idx) {
int ridx = d_ridx[(idx / row_stride) + segment.begin];
int gidx = d_gidx[ridx * row_stride + idx % row_stride];
if (gidx != null_gidx_value) {
AtomicAddGpair(d_node_hist + gidx, d_gpair[ridx]);
}
});
}
void BuildHistUsingSharedMem(int nidx) {
auto segment = ridx_segments[nidx];
auto segment_begin = segment.begin;
auto d_node_hist = hist.GetHistPtr(nidx);
auto d_gidx = gidx;
auto d_ridx = ridx.Current();
auto d_gpair = gpair.Data();
auto row_stride = this->row_stride;
auto null_gidx_value = this->null_gidx_value;
auto n_elements = segment.Size() * row_stride;
const size_t smem_size = sizeof(GradientPairSumT) * null_gidx_value;
const int items_per_thread = 8;
const int block_threads = 256;
const int grid_size =
static_cast<int>(dh::DivRoundUp(n_elements,
items_per_thread * block_threads));
if (grid_size <= 0) {
return;
}
dh::safe_cuda(cudaSetDevice(device_idx));
sharedMemHistKernel<<<grid_size, block_threads, smem_size>>>
(row_stride, d_ridx, d_gidx, null_gidx_value, d_node_hist, d_gpair,
segment_begin, n_elements);
}
void BuildHist(int nidx) {
if (can_use_smem_atomics) {
BuildHistUsingSharedMem(nidx);
} else {
BuildHistUsingGlobalMem(nidx);
}
}
void SubtractionTrick(int nidx_parent, int nidx_histogram,
int nidx_subtraction) {
// Make sure histograms are already allocated
hist.GetHistPtr(nidx_parent);
hist.GetHistPtr(nidx_histogram);
hist.GetHistPtr(nidx_subtraction);
auto d_node_hist_parent = hist.GetHistPtr(nidx_parent);
auto d_node_hist_histogram = hist.GetHistPtr(nidx_histogram);
auto d_node_hist_subtraction = hist.GetHistPtr(nidx_subtraction);
dh::LaunchN(device_idx, hist.n_bins, [=] __device__(size_t idx) {
d_node_hist_subtraction[idx] =
d_node_hist_parent[idx] - d_node_hist_histogram[idx];
});
}
__device__ void CountLeft(int64_t* d_count, int val, int left_nidx) {
unsigned ballot = __ballot(val == left_nidx);
if (threadIdx.x % 32 == 0) {
atomicAdd(reinterpret_cast<unsigned long long*>(d_count), // NOLINT
static_cast<unsigned long long>(__popc(ballot))); // NOLINT
}
}
void UpdatePosition(int nidx, int left_nidx, int right_nidx, int fidx,
int split_gidx, bool default_dir_left, bool is_dense,
int fidx_begin, int fidx_end) {
dh::safe_cuda(cudaSetDevice(device_idx));
temp_memory.LazyAllocate(sizeof(int64_t));
auto d_left_count = temp_memory.Pointer<int64_t>();
dh::safe_cuda(cudaMemset(d_left_count, 0, sizeof(int64_t)));
auto segment = ridx_segments[nidx];
auto d_ridx = ridx.Current();
auto d_position = position.Current();
auto d_gidx = gidx;
auto row_stride = this->row_stride;
dh::LaunchN<1, 512>(
device_idx, segment.Size(), [=] __device__(bst_uint idx) {
idx += segment.begin;
auto ridx = d_ridx[idx];
auto row_begin = row_stride * ridx;
auto row_end = row_begin + row_stride;
auto gidx = -1;
if (is_dense) {
gidx = d_gidx[row_begin + fidx];
} else {
gidx = BinarySearchRow(row_begin, row_end, d_gidx, fidx_begin,
fidx_end);
}
int position;
if (gidx >= 0) {
// Feature is found
position = gidx <= split_gidx ? left_nidx : right_nidx;
} else {
// Feature is missing
position = default_dir_left ? left_nidx : right_nidx;
}
CountLeft(d_left_count, position, left_nidx);
d_position[idx] = position;
});
dh::safe_cuda(cudaMemcpy(tmp_pinned, d_left_count, sizeof(int64_t),
cudaMemcpyDeviceToHost));
auto left_count = *tmp_pinned;
SortPosition(segment, left_nidx, right_nidx);
// dh::safe_cuda(cudaStreamSynchronize(stream));
ridx_segments[left_nidx] =
Segment(segment.begin, segment.begin + left_count);
ridx_segments[right_nidx] =
Segment(segment.begin + left_count, segment.end);
}
void SortPosition(const Segment& segment, int left_nidx, int right_nidx) {
int min_bits = 0;
int max_bits = static_cast<int>(
std::ceil(std::log2((std::max)(left_nidx, right_nidx) + 1)));
size_t temp_storage_bytes = 0;
cub::DeviceRadixSort::SortPairs(
nullptr, temp_storage_bytes, position.Current() + segment.begin,
position.other() + segment.begin, ridx.Current() + segment.begin,
ridx.other() + segment.begin, segment.Size(), min_bits, max_bits);
temp_memory.LazyAllocate(temp_storage_bytes);
cub::DeviceRadixSort::SortPairs(
temp_memory.d_temp_storage, temp_memory.temp_storage_bytes,
position.Current() + segment.begin, position.other() + segment.begin,
ridx.Current() + segment.begin, ridx.other() + segment.begin,
segment.Size(), min_bits, max_bits);
dh::safe_cuda(cudaMemcpy(
position.Current() + segment.begin, position.other() + segment.begin,
segment.Size() * sizeof(int), cudaMemcpyDeviceToDevice));
dh::safe_cuda(cudaMemcpy(
ridx.Current() + segment.begin, ridx.other() + segment.begin,
segment.Size() * sizeof(bst_uint), cudaMemcpyDeviceToDevice));
}
void UpdatePredictionCache(bst_float* out_preds_d) {
dh::safe_cuda(cudaSetDevice(device_idx));
if (!prediction_cache_initialised) {
dh::safe_cuda(cudaMemcpy(
prediction_cache.Data(), out_preds_d,
prediction_cache.Size() * sizeof(bst_float), cudaMemcpyDefault));
}
prediction_cache_initialised = true;
CalcWeightTrainParam param_d(param);
dh::safe_cuda(cudaMemcpy(node_sum_gradients_d.Data(),
node_sum_gradients.data(),
sizeof(GradientPair) * node_sum_gradients.size(),
cudaMemcpyHostToDevice));
auto d_position = position.Current();
auto d_ridx = ridx.Current();
auto d_node_sum_gradients = node_sum_gradients_d.Data();
auto d_prediction_cache = prediction_cache.Data();
dh::LaunchN(
device_idx, prediction_cache.Size(), [=] __device__(int local_idx) {
int pos = d_position[local_idx];
bst_float weight = CalcWeight(param_d, d_node_sum_gradients[pos]);
d_prediction_cache[d_ridx[local_idx]] +=
weight * param_d.learning_rate;
});
dh::safe_cuda(cudaMemcpy(
out_preds_d, prediction_cache.Data(),
prediction_cache.Size() * sizeof(bst_float), cudaMemcpyDefault));
}
};
class GPUHistMaker : public TreeUpdater {
public:
struct ExpandEntry;
GPUHistMaker() : initialised_(false), p_last_fmat_(nullptr) {}
void Init(
const std::vector<std::pair<std::string, std::string>>& args) override {
param_.InitAllowUnknown(args);
CHECK(param_.n_gpus != 0) << "Must have at least one device";
n_devices_ = param_.n_gpus;
devices_ = GPUSet::Range(param_.gpu_id, dh::NDevicesAll(param_.n_gpus));
dh::CheckComputeCapability();
if (param_.grow_policy == TrainParam::kLossGuide) {
qexpand_.reset(new ExpandQueue(LossGuide));
} else {
qexpand_.reset(new ExpandQueue(DepthWise));
}
monitor_.Init("updater_gpu_hist", param_.debug_verbose);
}
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
const std::vector<RegTree*>& trees) override {
monitor_.Start("Update", device_list_);
GradStats::CheckInfo(dmat->Info());
// rescale learning rate according to size of trees
float lr = param_.learning_rate;
param_.learning_rate = lr / trees.size();
ValueConstraint::Init(&param_, dmat->Info().num_col_);
// build tree
try {
for (size_t i = 0; i < trees.size(); ++i) {
this->UpdateTree(gpair, dmat, trees[i]);
}
dh::safe_cuda(cudaGetLastError());
} catch (const std::exception& e) {
LOG(FATAL) << "Exception in gpu_hist: " << e.what() << std::endl;
}
param_.learning_rate = lr;
monitor_.Stop("Update", device_list_);
}
void InitDataOnce(DMatrix* dmat) {
info_ = &dmat->Info();
int n_devices = dh::NDevices(param_.n_gpus, info_->num_row_);
device_list_.resize(n_devices);
for (int d_idx = 0; d_idx < n_devices; ++d_idx) {
int device_idx = (param_.gpu_id + d_idx) % dh::NVisibleDevices();
device_list_[d_idx] = device_idx;
}
reducer_.Init(device_list_);
// Partition input matrix into row segments
std::vector<size_t> row_segments;
dh::RowSegments(info_->num_row_, n_devices, &row_segments);
dmlc::DataIter<SparsePage>* iter = dmat->RowIterator();
iter->BeforeFirst();
CHECK(iter->Next()) << "Empty batches are not supported";
const SparsePage& batch = iter->Value();
// Create device shards
shards_.resize(n_devices);
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard>& shard) {
shard = std::unique_ptr<DeviceShard>
(new DeviceShard(device_list_[i], i,
row_segments[i], row_segments[i + 1], param_));
shard->InitRowPtrs(batch);
});
monitor_.Start("Quantiles", device_list_);
common::DeviceSketch(batch, *info_, param_, &hmat_);
n_bins_ = hmat_.row_ptr.back();
monitor_.Stop("Quantiles", device_list_);
monitor_.Start("BinningCompression", device_list_);
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->InitCompressedData(hmat_, batch);
});
monitor_.Stop("BinningCompression", device_list_);
CHECK(!iter->Next()) << "External memory not supported";
p_last_fmat_ = dmat;
initialised_ = true;
}
void InitData(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
const RegTree& tree) {
monitor_.Start("InitDataOnce", device_list_);
if (!initialised_) {
this->InitDataOnce(dmat);
}
monitor_.Stop("InitDataOnce", device_list_);
column_sampler_.Init(info_->num_col_, param_);
// Copy gpair & reset memory
monitor_.Start("InitDataReset", device_list_);
gpair->Reshard(devices_);
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {shard->Reset(gpair); });
monitor_.Stop("InitDataReset", device_list_);
}
void AllReduceHist(int nidx) {
reducer_.GroupStart();
for (auto& shard : shards_) {
auto d_node_hist = shard->hist.GetHistPtr(nidx);
reducer_.AllReduceSum(
shard->normalised_device_idx,
reinterpret_cast<GradientPairSumT::ValueT*>(d_node_hist),
reinterpret_cast<GradientPairSumT::ValueT*>(d_node_hist),
n_bins_ * (sizeof(GradientPairSumT) / sizeof(GradientPairSumT::ValueT)));
}
reducer_.GroupEnd();
reducer_.Synchronize();
}
void BuildHistLeftRight(int nidx_parent, int nidx_left, int nidx_right) {
size_t left_node_max_elements = 0;
size_t right_node_max_elements = 0;
for (auto& shard : shards_) {
left_node_max_elements = (std::max)(
left_node_max_elements, shard->ridx_segments[nidx_left].Size());
right_node_max_elements = (std::max)(
right_node_max_elements, shard->ridx_segments[nidx_right].Size());
}
auto build_hist_nidx = nidx_left;
auto subtraction_trick_nidx = nidx_right;
if (right_node_max_elements < left_node_max_elements) {
build_hist_nidx = nidx_right;
subtraction_trick_nidx = nidx_left;
}
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->BuildHist(build_hist_nidx);
});
this->AllReduceHist(build_hist_nidx);
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->SubtractionTrick(nidx_parent, build_hist_nidx,
subtraction_trick_nidx);
});
}
// Returns best loss
std::vector<DeviceSplitCandidate> EvaluateSplits(
const std::vector<int>& nidx_set, RegTree* p_tree) {
auto columns = info_->num_col_;
std::vector<DeviceSplitCandidate> best_splits(nidx_set.size());
std::vector<DeviceSplitCandidate> candidate_splits(nidx_set.size() *
columns);
// Use first device
auto& shard = shards_.front();
dh::safe_cuda(cudaSetDevice(shard->device_idx));
shard->temp_memory.LazyAllocate(sizeof(DeviceSplitCandidate) * columns *
nidx_set.size());
auto d_split = shard->temp_memory.Pointer<DeviceSplitCandidate>();
auto& streams = shard->GetStreams(static_cast<int>(nidx_set.size()));
// Use streams to process nodes concurrently
for (auto i = 0; i < nidx_set.size(); i++) {
auto nidx = nidx_set[i];
DeviceNodeStats node(shard->node_sum_gradients[nidx], nidx, param_);
const int BLOCK_THREADS = 256;
evaluate_split_kernel<BLOCK_THREADS>
<<<uint32_t(columns), BLOCK_THREADS, 0, streams[i]>>>(
shard->hist.GetHistPtr(nidx), nidx, info_->num_col_, node,
shard->feature_segments.Data(), shard->min_fvalue.Data(),
shard->gidx_fvalue_map.Data(), GPUTrainingParam(param_),
d_split + i * columns, node_value_constraints_[nidx],
shard->monotone_constraints.Data());
}
dh::safe_cuda(
cudaMemcpy(candidate_splits.data(), shard->temp_memory.d_temp_storage,
sizeof(DeviceSplitCandidate) * columns * nidx_set.size(),
cudaMemcpyDeviceToHost));
for (auto i = 0; i < nidx_set.size(); i++) {
auto nidx = nidx_set[i];
DeviceSplitCandidate nidx_best;
for (auto fidx = 0; fidx < columns; fidx++) {
auto& candidate = candidate_splits[i * columns + fidx];
if (column_sampler_.ColumnUsed(candidate.findex,
p_tree->GetDepth(nidx))) {
nidx_best.Update(candidate_splits[i * columns + fidx], param_);
}
}
best_splits[i] = nidx_best;
}
return std::move(best_splits);
}
void InitRoot(RegTree* p_tree) {
auto root_nidx = 0;
// Sum gradients
std::vector<GradientPair> tmp_sums(shards_.size());
dh::ExecuteIndexShards(&shards_, [&](int i, std::unique_ptr<DeviceShard>& shard) {
dh::safe_cuda(cudaSetDevice(shard->device_idx));
tmp_sums[i] =
dh::SumReduction(shard->temp_memory, shard->gpair.Data(),
shard->gpair.Size());
});
auto sum_gradient =
std::accumulate(tmp_sums.begin(), tmp_sums.end(), GradientPair());
// Generate root histogram
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->BuildHist(root_nidx);
});
this->AllReduceHist(root_nidx);
// Remember root stats
p_tree->Stat(root_nidx).sum_hess = sum_gradient.GetHess();
auto weight = CalcWeight(param_, sum_gradient);
p_tree->Stat(root_nidx).base_weight = weight;
(*p_tree)[root_nidx].SetLeaf(param_.learning_rate * weight);
// Store sum gradients
for (auto& shard : shards_) {
shard->node_sum_gradients[root_nidx] = sum_gradient;
}
// Initialise root constraint
node_value_constraints_.resize(p_tree->GetNodes().size());
// Generate first split
auto splits = this->EvaluateSplits({root_nidx}, p_tree);
qexpand_->push(
ExpandEntry(root_nidx, p_tree->GetDepth(root_nidx), splits.front(), 0));
}
void UpdatePosition(const ExpandEntry& candidate, RegTree* p_tree) {
auto nidx = candidate.nid;
auto left_nidx = (*p_tree)[nidx].LeftChild();
auto right_nidx = (*p_tree)[nidx].RightChild();
// convert floating-point split_pt into corresponding bin_id
// split_cond = -1 indicates that split_pt is less than all known cut points
auto split_gidx = -1;
auto fidx = candidate.split.findex;
auto default_dir_left = candidate.split.dir == kLeftDir;
auto fidx_begin = hmat_.row_ptr[fidx];
auto fidx_end = hmat_.row_ptr[fidx + 1];
for (auto i = fidx_begin; i < fidx_end; ++i) {
if (candidate.split.fvalue == hmat_.cut[i]) {
split_gidx = static_cast<int32_t>(i);
}
}
auto is_dense = info_->num_nonzero_ == info_->num_row_ * info_->num_col_;
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->UpdatePosition(nidx, left_nidx, right_nidx, fidx,
split_gidx, default_dir_left,
is_dense, fidx_begin, fidx_end);
});
}
void ApplySplit(const ExpandEntry& candidate, RegTree* p_tree) {
// Add new leaves
RegTree& tree = *p_tree;
tree.AddChilds(candidate.nid);
auto& parent = tree[candidate.nid];
parent.SetSplit(candidate.split.findex, candidate.split.fvalue,
candidate.split.dir == kLeftDir);
tree.Stat(candidate.nid).loss_chg = candidate.split.loss_chg;
// Set up child constraints
node_value_constraints_.resize(tree.GetNodes().size());
GradStats left_stats(param_);
left_stats.Add(candidate.split.left_sum);
GradStats right_stats(param_);
right_stats.Add(candidate.split.right_sum);
node_value_constraints_[candidate.nid].SetChild(
param_, parent.SplitIndex(), left_stats, right_stats,
&node_value_constraints_[parent.LeftChild()],
&node_value_constraints_[parent.RightChild()]);
// Configure left child
auto left_weight =
node_value_constraints_[parent.LeftChild()].CalcWeight(param_, left_stats);
tree[parent.LeftChild()].SetLeaf(left_weight * param_.learning_rate, 0);
tree.Stat(parent.LeftChild()).base_weight = left_weight;
tree.Stat(parent.LeftChild()).sum_hess = candidate.split.left_sum.GetHess();
// Configure right child
auto right_weight =
node_value_constraints_[parent.RightChild()].CalcWeight(param_, right_stats);
tree[parent.RightChild()].SetLeaf(right_weight * param_.learning_rate, 0);
tree.Stat(parent.RightChild()).base_weight = right_weight;
tree.Stat(parent.RightChild()).sum_hess = candidate.split.right_sum.GetHess();
// Store sum gradients
for (auto& shard : shards_) {
shard->node_sum_gradients[parent.LeftChild()] = candidate.split.left_sum;
shard->node_sum_gradients[parent.RightChild()] = candidate.split.right_sum;
}
this->UpdatePosition(candidate, p_tree);
}
void UpdateTree(HostDeviceVector<GradientPair>* gpair, DMatrix* p_fmat,
RegTree* p_tree) {
auto& tree = *p_tree;
monitor_.Start("InitData", device_list_);
this->InitData(gpair, p_fmat, *p_tree);
monitor_.Stop("InitData", device_list_);
monitor_.Start("InitRoot", device_list_);
this->InitRoot(p_tree);
monitor_.Stop("InitRoot", device_list_);
auto timestamp = qexpand_->size();
auto num_leaves = 1;
while (!qexpand_->empty()) {
auto candidate = qexpand_->top();
qexpand_->pop();
if (!candidate.IsValid(param_, num_leaves)) continue;
// std::cout << candidate;
monitor_.Start("ApplySplit", device_list_);
this->ApplySplit(candidate, p_tree);
monitor_.Stop("ApplySplit", device_list_);
num_leaves++;
auto left_child_nidx = tree[candidate.nid].LeftChild();
auto right_child_nidx = tree[candidate.nid].RightChild();
// Only create child entries if needed
if (ExpandEntry::ChildIsValid(param_, tree.GetDepth(left_child_nidx),
num_leaves)) {
monitor_.Start("BuildHist", device_list_);
this->BuildHistLeftRight(candidate.nid, left_child_nidx,
right_child_nidx);
monitor_.Stop("BuildHist", device_list_);
monitor_.Start("EvaluateSplits", device_list_);
auto splits =
this->EvaluateSplits({left_child_nidx, right_child_nidx}, p_tree);
qexpand_->push(ExpandEntry(left_child_nidx,
tree.GetDepth(left_child_nidx), splits[0],
timestamp++));
qexpand_->push(ExpandEntry(right_child_nidx,
tree.GetDepth(right_child_nidx), splits[1],
timestamp++));
monitor_.Stop("EvaluateSplits", device_list_);
}
}
}
bool UpdatePredictionCache(
const DMatrix* data, HostDeviceVector<bst_float>* p_out_preds) override {
monitor_.Start("UpdatePredictionCache", device_list_);
if (shards_.empty() || p_last_fmat_ == nullptr || p_last_fmat_ != data)
return false;
p_out_preds->Reshard(devices_);
dh::ExecuteShards(&shards_, [&](std::unique_ptr<DeviceShard>& shard) {
shard->UpdatePredictionCache(p_out_preds->DevicePointer(shard->device_idx));
});
monitor_.Stop("UpdatePredictionCache", device_list_);
return true;
}
struct ExpandEntry {
int nid;
int depth;
DeviceSplitCandidate split;
uint64_t timestamp;
ExpandEntry(int nid, int depth, const DeviceSplitCandidate& split,
uint64_t timestamp)
: nid(nid), depth(depth), split(split), timestamp(timestamp) {}
bool IsValid(const TrainParam& param, int num_leaves) const {
if (split.loss_chg <= kRtEps) return false;
if (split.left_sum.GetHess() == 0 || split.right_sum.GetHess() == 0)
return false;
if (param.max_depth > 0 && depth == param.max_depth) return false;
if (param.max_leaves > 0 && num_leaves == param.max_leaves) return false;
return true;
}
static bool ChildIsValid(const TrainParam& param, int depth,
int num_leaves) {
if (param.max_depth > 0 && depth == param.max_depth) return false;
if (param.max_leaves > 0 && num_leaves == param.max_leaves) return false;
return true;
}
friend std::ostream& operator<<(std::ostream& os, const ExpandEntry& e) {
os << "ExpandEntry: \n";
os << "nidx: " << e.nid << "\n";
os << "depth: " << e.depth << "\n";
os << "loss: " << e.split.loss_chg << "\n";
os << "left_sum: " << e.split.left_sum << "\n";
os << "right_sum: " << e.split.right_sum << "\n";
return os;
}
};
inline static bool DepthWise(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.depth == rhs.depth) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.depth > rhs.depth; // favor small depth
}
}
inline static bool LossGuide(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.split.loss_chg == rhs.split.loss_chg) {
return lhs.timestamp > rhs.timestamp; // favor small timestamp
} else {
return lhs.split.loss_chg < rhs.split.loss_chg; // favor large loss_chg
}
}
TrainParam param_;
common::HistCutMatrix hmat_;
common::GHistIndexMatrix gmat_;
MetaInfo* info_;
bool initialised_;
int n_devices_;
int n_bins_;
std::vector<std::unique_ptr<DeviceShard>> shards_;
ColumnSampler column_sampler_;
typedef std::priority_queue<ExpandEntry, std::vector<ExpandEntry>,
std::function<bool(ExpandEntry, ExpandEntry)>>
ExpandQueue;
std::unique_ptr<ExpandQueue> qexpand_;
common::Monitor monitor_;
dh::AllReducer reducer_;
std::vector<ValueConstraint> node_value_constraints_;
std::vector<int> device_list_;
DMatrix* p_last_fmat_;
GPUSet devices_;
};
XGBOOST_REGISTER_TREE_UPDATER(GPUHistMaker, "grow_gpu_hist")
.describe("Grow tree with GPU.")
.set_body([]() { return new GPUHistMaker(); });
} // namespace tree
} // namespace xgboost