64 lines
1.7 KiB
Python
64 lines
1.7 KiB
Python
import sys
|
|
import numpy as np
|
|
|
|
import unittest
|
|
import pytest
|
|
|
|
import xgboost as xgb
|
|
sys.path.append("tests/python")
|
|
import testing as tm
|
|
import test_monotone_constraints as tmc
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
def non_decreasing(L):
|
|
return all((x - y) < 0.001 for x, y in zip(L, L[1:]))
|
|
|
|
|
|
def non_increasing(L):
|
|
return all((y - x) < 0.001 for x, y in zip(L, L[1:]))
|
|
|
|
|
|
def assert_constraint(constraint, tree_method):
|
|
from sklearn.datasets import make_regression
|
|
n = 1000
|
|
X, y = make_regression(n, random_state=rng, n_features=1, n_informative=1)
|
|
dtrain = xgb.DMatrix(X, y)
|
|
param = {}
|
|
param['tree_method'] = tree_method
|
|
param['monotone_constraints'] = "(" + str(constraint) + ")"
|
|
bst = xgb.train(param, dtrain)
|
|
dpredict = xgb.DMatrix(X[X[:, 0].argsort()])
|
|
pred = bst.predict(dpredict)
|
|
|
|
if constraint > 0:
|
|
assert non_decreasing(pred)
|
|
elif constraint < 0:
|
|
assert non_increasing(pred)
|
|
|
|
|
|
class TestMonotonicConstraints(unittest.TestCase):
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def test_gpu_hist_basic(self):
|
|
assert_constraint(1, 'gpu_hist')
|
|
assert_constraint(-1, 'gpu_hist')
|
|
|
|
def test_gpu_hist_depthwise(self):
|
|
params = {
|
|
'tree_method': 'gpu_hist',
|
|
'grow_policy': 'depthwise',
|
|
'monotone_constraints': '(1, -1)'
|
|
}
|
|
model = xgb.train(params, tmc.training_dset)
|
|
tmc.is_correctly_constrained(model)
|
|
|
|
def test_gpu_hist_lossguide(self):
|
|
params = {
|
|
'tree_method': 'gpu_hist',
|
|
'grow_policy': 'lossguide',
|
|
'monotone_constraints': '(1, -1)'
|
|
}
|
|
model = xgb.train(params, tmc.training_dset)
|
|
tmc.is_correctly_constrained(model)
|