xgboost/tests/cpp/tree/gpu_hist/test_row_partitioner.cu

101 lines
3.5 KiB
Plaintext

/*!
* Copyright 2019-2022 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/sequence.h>
#include <algorithm>
#include <vector>
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"
#include "../../helpers.h"
#include "xgboost/base.h"
#include "xgboost/context.h"
#include "xgboost/task.h"
#include "xgboost/tree_model.h"
namespace xgboost {
namespace tree {
void TestUpdatePositionBatch() {
const int kNumRows = 10;
RowPartitioner rp(0, kNumRows);
auto rows = rp.GetRowsHost(0);
EXPECT_EQ(rows.size(), kNumRows);
for (auto i = 0ull; i < kNumRows; i++) {
EXPECT_EQ(rows[i], i);
}
std::vector<int> extra_data = {0};
// Send the first five training instances to the right node
// and the second 5 to the left node
rp.UpdatePositionBatch({0}, {1}, {2}, extra_data, [=] __device__(RowPartitioner::RowIndexT ridx, int, int) {
return ridx > 4;
});
rows = rp.GetRowsHost(1);
for (auto r : rows) {
EXPECT_GT(r, 4);
}
rows = rp.GetRowsHost(2);
for (auto r : rows) {
EXPECT_LT(r, 5);
}
// Split the left node again
rp.UpdatePositionBatch({1}, {3}, {4}, extra_data,[=] __device__(RowPartitioner::RowIndexT ridx, int, int) {
return ridx < 7;
});
EXPECT_EQ(rp.GetRows(3).size(), 2);
EXPECT_EQ(rp.GetRows(4).size(), 3);
}
TEST(RowPartitioner, Batch) { TestUpdatePositionBatch(); }
void TestSortPositionBatch(const std::vector<int>& ridx_in, const std::vector<Segment>& segments) {
thrust::device_vector<uint32_t> ridx = ridx_in;
thrust::device_vector<uint32_t> ridx_tmp(ridx_in.size());
thrust::device_vector<bst_uint> counts(segments.size());
auto op = [=] __device__(auto ridx, int split_index, int data) { return ridx % 2 == 0; };
std::vector<int> op_data(segments.size());
std::vector<PerNodeData<int>> h_batch_info(segments.size());
dh::TemporaryArray<PerNodeData<int>> d_batch_info(segments.size());
std::size_t total_rows = 0;
for (size_t i = 0; i < segments.size(); i++) {
h_batch_info[i] = {segments.at(i), 0};
total_rows += segments.at(i).Size();
}
dh::safe_cuda(cudaMemcpyAsync(d_batch_info.data().get(), h_batch_info.data(),
h_batch_info.size() * sizeof(PerNodeData<int>), cudaMemcpyDefault,
nullptr));
dh::device_vector<int8_t> tmp;
SortPositionBatch<uint32_t, decltype(op), int>(dh::ToSpan(d_batch_info), dh::ToSpan(ridx),
dh::ToSpan(ridx_tmp), dh::ToSpan(counts),
total_rows, op, &tmp);
auto op_without_data = [=] __device__(auto ridx) { return ridx % 2 == 0; };
for (size_t i = 0; i < segments.size(); i++) {
auto begin = ridx.begin() + segments[i].begin;
auto end = ridx.begin() + segments[i].end;
bst_uint count = counts[i];
auto left_partition_count =
thrust::count_if(thrust::device, begin, begin + count, op_without_data);
EXPECT_EQ(left_partition_count, count);
auto right_partition_count =
thrust::count_if(thrust::device, begin + count, end, op_without_data);
EXPECT_EQ(right_partition_count, 0);
}
}
TEST(GpuHist, SortPositionBatch) {
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{0, 3}, {3, 6}});
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{0, 1}, {3, 6}});
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{0, 6}});
TestSortPositionBatch({0, 1, 2, 3, 4, 5}, {{3, 6}, {0, 2}});
}
} // namespace tree
} // namespace xgboost