* Cleanup Python GPU tests. - Remove the use of `gpu_hist` and `gpu_id` in cudf/cupy tests. - Move base margin test into the testing directory.
66 lines
1.6 KiB
Python
66 lines
1.6 KiB
Python
import sys
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import xgboost as xgb
|
|
from xgboost import testing as tm
|
|
|
|
sys.path.append("tests/python")
|
|
import test_monotone_constraints as tmc
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
|
|
def non_decreasing(L):
|
|
return all((x - y) < 0.001 for x, y in zip(L, L[1:]))
|
|
|
|
|
|
def non_increasing(L):
|
|
return all((y - x) < 0.001 for x, y in zip(L, L[1:]))
|
|
|
|
|
|
def assert_constraint(constraint, tree_method):
|
|
from sklearn.datasets import make_regression
|
|
|
|
n = 1000
|
|
X, y = make_regression(n, random_state=rng, n_features=1, n_informative=1)
|
|
dtrain = xgb.DMatrix(X, y)
|
|
param = {}
|
|
param["tree_method"] = tree_method
|
|
param["monotone_constraints"] = "(" + str(constraint) + ")"
|
|
bst = xgb.train(param, dtrain)
|
|
dpredict = xgb.DMatrix(X[X[:, 0].argsort()])
|
|
pred = bst.predict(dpredict)
|
|
|
|
if constraint > 0:
|
|
assert non_decreasing(pred)
|
|
elif constraint < 0:
|
|
assert non_increasing(pred)
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_sklearn())
|
|
def test_gpu_hist_basic():
|
|
assert_constraint(1, "gpu_hist")
|
|
assert_constraint(-1, "gpu_hist")
|
|
|
|
|
|
def test_gpu_hist_depthwise():
|
|
params = {
|
|
"tree_method": "gpu_hist",
|
|
"grow_policy": "depthwise",
|
|
"monotone_constraints": "(1, -1)",
|
|
}
|
|
model = xgb.train(params, tmc.training_dset)
|
|
tmc.is_correctly_constrained(model)
|
|
|
|
|
|
def test_gpu_hist_lossguide():
|
|
params = {
|
|
"tree_method": "gpu_hist",
|
|
"grow_policy": "lossguide",
|
|
"monotone_constraints": "(1, -1)",
|
|
}
|
|
model = xgb.train(params, tmc.training_dset)
|
|
tmc.is_correctly_constrained(model)
|