* [jvm-packages] add gpu_hist tree method * change updater hist to grow_quantile_histmaker * add gpu scheduling * pass correct parameters to xgboost library * remove debug info * add use.cuda for pom * add CI for gpu_hist for jvm * add gpu unit tests * use gpu node to build jvm * use nvidia-docker * Add CLI interface to create_jni.py using argparse Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
41 lines
1.2 KiB
Bash
Executable File
41 lines
1.2 KiB
Bash
Executable File
#!/bin/bash
|
|
|
|
set -e
|
|
set -x
|
|
|
|
|
|
nvidia-smi
|
|
|
|
ls /usr/local/
|
|
|
|
# Initialize local Maven repository
|
|
./tests/ci_build/initialize_maven.sh
|
|
|
|
# Get version number of XGBoost4J and other auxiliary information
|
|
cd jvm-packages
|
|
xgboost4j_version=$(mvn help:evaluate -Dexpression=project.version -q -DforceStdout)
|
|
scala_binary_version=$(mvn help:evaluate -Dexpression=scala.binary.version -q -DforceStdout)
|
|
|
|
python3 xgboost4j-tester/get_iris.py
|
|
xgb_jars="./xgboost4j/target/xgboost4j_${scala_binary_version}-${xgboost4j_version}.jar,./xgboost4j-spark/target/xgboost4j-spark_${scala_binary_version}-${xgboost4j_version}.jar"
|
|
example_jar="./xgboost4j-example/target/xgboost4j-example_${scala_binary_version}-${xgboost4j_version}.jar"
|
|
|
|
echo "Run SparkTraining locally ... "
|
|
spark-submit \
|
|
--master 'local[1]' \
|
|
--class ml.dmlc.xgboost4j.scala.example.spark.SparkTraining \
|
|
--jars $xgb_jars \
|
|
$example_jar \
|
|
${PWD}/iris.csv gpu \
|
|
|
|
echo "Run SparkMLlibPipeline locally ... "
|
|
spark-submit \
|
|
--master 'local[1]' \
|
|
--class ml.dmlc.xgboost4j.scala.example.spark.SparkMLlibPipeline \
|
|
--jars $xgb_jars \
|
|
$example_jar \
|
|
${PWD}/iris.csv ${PWD}/native_model ${PWD}/pipeline_model gpu \
|
|
|
|
set +x
|
|
set +e
|