xgboost/tests/python/test_updaters.py
Jiaming Yuan cfd2a9f872
Extract dask and spark test into distributed test. (#8395)
- Move test files.
- Run spark and dask separately to prevent conflicts.
- Gather common code into the testing module.
2022-10-28 16:24:32 +08:00

445 lines
16 KiB
Python

import json
from string import ascii_lowercase
from typing import Any, Dict
import numpy as np
import pytest
from hypothesis import given, note, settings, strategies
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.params import (
exact_parameter_strategy,
hist_parameter_strategy,
cat_parameter_strategy,
)
def train_result(param, dmat, num_rounds):
result = {}
xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False,
evals_result=result)
return result
class TestTreeMethod:
USE_ONEHOT = np.iinfo(np.int32).max
USE_PART = 1
@given(exact_parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None, print_blob=True)
def test_exact(self, param, num_rounds, dataset):
if dataset.name.endswith("-l1"):
return
param['tree_method'] = 'exact'
param = dataset.set_params(param)
result = train_result(param, dataset.get_dmat(), num_rounds)
assert tm.non_increasing(result['train'][dataset.metric])
@given(
exact_parameter_strategy,
hist_parameter_strategy,
strategies.integers(1, 20),
tm.dataset_strategy,
)
@settings(deadline=None, print_blob=True)
def test_approx(self, param, hist_param, num_rounds, dataset):
param["tree_method"] = "approx"
param = dataset.set_params(param)
param.update(hist_param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(result)
assert tm.non_increasing(result["train"][dataset.metric])
@pytest.mark.skipif(**tm.no_sklearn())
def test_pruner(self):
import sklearn
params = {'tree_method': 'exact'}
cancer = sklearn.datasets.load_breast_cancer()
X = cancer['data']
y = cancer["target"]
dtrain = xgb.DMatrix(X, y)
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10)
grown = str(booster.get_dump())
params = {'updater': 'prune', 'process_type': 'update', 'gamma': '0.2'}
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10,
xgb_model=booster)
after_prune = str(booster.get_dump())
assert grown != after_prune
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10,
xgb_model=booster)
second_prune = str(booster.get_dump())
# Second prune should not change the tree
assert after_prune == second_prune
@given(exact_parameter_strategy, hist_parameter_strategy, strategies.integers(1, 20),
tm.dataset_strategy)
@settings(deadline=None, print_blob=True)
def test_hist(self, param, hist_param, num_rounds, dataset):
param['tree_method'] = 'hist'
param = dataset.set_params(param)
param.update(hist_param)
result = train_result(param, dataset.get_dmat(), num_rounds)
note(result)
assert tm.non_increasing(result['train'][dataset.metric])
@given(tm.sparse_datasets_strategy)
@settings(deadline=None, print_blob=True)
def test_sparse(self, dataset):
param = {"tree_method": "hist", "max_bin": 64}
hist_result = train_result(param, dataset.get_dmat(), 16)
note(hist_result)
assert tm.non_increasing(hist_result['train'][dataset.metric])
param = {"tree_method": "approx", "max_bin": 64}
approx_result = train_result(param, dataset.get_dmat(), 16)
note(approx_result)
assert tm.non_increasing(approx_result['train'][dataset.metric])
np.testing.assert_allclose(
hist_result["train"]["rmse"], approx_result["train"]["rmse"]
)
def test_hist_categorical(self):
# hist must be same as exact on all-categorial data
dpath = 'demo/data/'
ag_dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
ag_dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
ag_param = {'max_depth': 2,
'tree_method': 'hist',
'eta': 1,
'verbosity': 0,
'objective': 'binary:logistic',
'eval_metric': 'auc'}
hist_res = {}
exact_res = {}
xgb.train(ag_param, ag_dtrain, 10,
[(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=hist_res)
ag_param["tree_method"] = "exact"
xgb.train(ag_param, ag_dtrain, 10,
[(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=exact_res)
assert hist_res['train']['auc'] == exact_res['train']['auc']
assert hist_res['test']['auc'] == exact_res['test']['auc']
@pytest.mark.skipif(**tm.no_sklearn())
def test_hist_degenerate_case(self):
# Test a degenerate case where the quantile sketcher won't return any
# quantile points for a particular feature (the second feature in
# this example). Source: https://github.com/dmlc/xgboost/issues/2943
nan = np.nan
param = {'missing': nan, 'tree_method': 'hist'}
model = xgb.XGBRegressor(**param)
X = np.array([[6.18827160e+05, 1.73000000e+02], [6.37345679e+05, nan],
[6.38888889e+05, nan], [6.28086420e+05, nan]])
y = [1000000., 0., 0., 500000.]
w = [0, 0, 1, 0]
model.fit(X, y, sample_weight=w)
def run_invalid_category(self, tree_method: str) -> None:
rng = np.random.default_rng()
# too large
X = rng.integers(low=0, high=4, size=1000).reshape(100, 10)
y = rng.normal(loc=0, scale=1, size=100)
X[13, 7] = np.iinfo(np.int32).max + 1
# Check is performed during sketching.
Xy = xgb.DMatrix(X, y, feature_types=["c"] * 10)
with pytest.raises(ValueError):
xgb.train({"tree_method": tree_method}, Xy)
X[13, 7] = 16777216
Xy = xgb.DMatrix(X, y, feature_types=["c"] * 10)
with pytest.raises(ValueError):
xgb.train({"tree_method": tree_method}, Xy)
# mixed positive and negative values
X = rng.normal(loc=0, scale=1, size=1000).reshape(100, 10)
y = rng.normal(loc=0, scale=1, size=100)
Xy = xgb.DMatrix(X, y, feature_types=["c"] * 10)
with pytest.raises(ValueError):
xgb.train({"tree_method": tree_method}, Xy)
if tree_method == "gpu_hist":
import cupy as cp
X, y = cp.array(X), cp.array(y)
with pytest.raises(ValueError):
Xy = xgb.DeviceQuantileDMatrix(X, y, feature_types=["c"] * 10)
def test_invalid_category(self) -> None:
self.run_invalid_category("approx")
self.run_invalid_category("hist")
def run_max_cat(self, tree_method: str) -> None:
"""Test data with size smaller than number of categories."""
import pandas as pd
rng = np.random.default_rng(0)
n_cat = 100
n = 5
X = pd.Series(
["".join(rng.choice(list(ascii_lowercase), size=3)) for i in range(n_cat)],
dtype="category",
)[:n].to_frame()
reg = xgb.XGBRegressor(
enable_categorical=True,
tree_method=tree_method,
n_estimators=10,
)
y = pd.Series(range(n))
reg.fit(X=X, y=y, eval_set=[(X, y)])
assert tm.non_increasing(reg.evals_result()["validation_0"]["rmse"])
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
@pytest.mark.skipif(**tm.no_pandas())
def test_max_cat(self, tree_method) -> None:
self.run_max_cat(tree_method)
def run_categorical_missing(
self, rows: int, cols: int, cats: int, tree_method: str
) -> None:
parameters: Dict[str, Any] = {"tree_method": tree_method}
cat, label = tm.make_categorical(
n_samples=rows, n_features=cols, n_categories=cats, onehot=False, sparsity=0.5
)
Xy = xgb.DMatrix(cat, label, enable_categorical=True)
def run(max_cat_to_onehot: int):
# Test with onehot splits
parameters["max_cat_to_onehot"] = max_cat_to_onehot
evals_result: Dict[str, Dict] = {}
booster = xgb.train(
parameters,
Xy,
num_boost_round=16,
evals=[(Xy, "Train")],
evals_result=evals_result
)
assert tm.non_increasing(evals_result["Train"]["rmse"])
y_predt = booster.predict(Xy)
rmse = tm.root_mean_square(label, y_predt)
np.testing.assert_allclose(rmse, evals_result["Train"]["rmse"][-1])
# Test with OHE split
run(self.USE_ONEHOT)
# Test with partition-based split
run(self.USE_PART)
def run_categorical_ohe(self, rows, cols, rounds, cats, tree_method):
onehot, label = tm.make_categorical(rows, cols, cats, True)
cat, _ = tm.make_categorical(rows, cols, cats, False)
by_etl_results = {}
by_builtin_results = {}
predictor = "gpu_predictor" if tree_method == "gpu_hist" else None
parameters = {"tree_method": tree_method, "predictor": predictor}
# Use one-hot exclusively
parameters["max_cat_to_onehot"] = self.USE_ONEHOT
m = xgb.DMatrix(onehot, label, enable_categorical=False)
xgb.train(
parameters,
m,
num_boost_round=rounds,
evals=[(m, "Train")],
evals_result=by_etl_results,
)
m = xgb.DMatrix(cat, label, enable_categorical=True)
xgb.train(
parameters,
m,
num_boost_round=rounds,
evals=[(m, "Train")],
evals_result=by_builtin_results,
)
# There are guidelines on how to specify tolerance based on considering output as
# random variables. But in here the tree construction is extremely sensitive to
# floating point errors. An 1e-5 error in a histogram bin can lead to an entirely
# different tree. So even though the test is quite lenient, hypothesis can still
# pick up falsifying examples from time to time.
np.testing.assert_allclose(
np.array(by_etl_results["Train"]["rmse"]),
np.array(by_builtin_results["Train"]["rmse"]),
rtol=1e-3,
)
assert tm.non_increasing(by_builtin_results["Train"]["rmse"])
by_grouping: xgb.callback.TrainingCallback.EvalsLog = {}
# switch to partition-based splits
parameters["max_cat_to_onehot"] = self.USE_PART
parameters["reg_lambda"] = 0
m = xgb.DMatrix(cat, label, enable_categorical=True)
xgb.train(
parameters,
m,
num_boost_round=rounds,
evals=[(m, "Train")],
evals_result=by_grouping,
)
rmse_oh = by_builtin_results["Train"]["rmse"]
rmse_group = by_grouping["Train"]["rmse"]
# always better or equal to onehot when there's no regularization.
for a, b in zip(rmse_oh, rmse_group):
assert a >= b
parameters["reg_lambda"] = 1.0
by_grouping = {}
xgb.train(
parameters,
m,
num_boost_round=32,
evals=[(m, "Train")],
evals_result=by_grouping,
)
assert tm.non_increasing(by_grouping["Train"]["rmse"]), by_grouping
@given(strategies.integers(10, 400), strategies.integers(3, 8),
strategies.integers(1, 2), strategies.integers(4, 7))
@settings(deadline=None, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical_ohe(self, rows, cols, rounds, cats):
self.run_categorical_ohe(rows, cols, rounds, cats, "approx")
self.run_categorical_ohe(rows, cols, rounds, cats, "hist")
@given(
tm.categorical_dataset_strategy,
exact_parameter_strategy,
hist_parameter_strategy,
cat_parameter_strategy,
strategies.integers(4, 32),
strategies.sampled_from(["hist", "approx"]),
)
@settings(deadline=None, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(
self,
dataset: tm.TestDataset,
exact_parameters: Dict[str, Any],
hist_parameters: Dict[str, Any],
cat_parameters: Dict[str, Any],
n_rounds: int,
tree_method: str,
) -> None:
cat_parameters.update(exact_parameters)
cat_parameters.update(hist_parameters)
cat_parameters["tree_method"] = tree_method
results = train_result(cat_parameters, dataset.get_dmat(), n_rounds)
tm.non_increasing(results["train"]["rmse"])
@given(
hist_parameter_strategy,
cat_parameter_strategy,
strategies.sampled_from(["hist", "approx"]),
)
@settings(deadline=None, print_blob=True)
def test_categorical_ames_housing(
self,
hist_parameters: Dict[str, Any],
cat_parameters: Dict[str, Any],
tree_method: str,
) -> None:
cat_parameters.update(hist_parameters)
dataset = tm.TestDataset(
"ames_housing", tm.get_ames_housing, "reg:squarederror", "rmse"
)
cat_parameters["tree_method"] = tree_method
results = train_result(cat_parameters, dataset.get_dmat(), 16)
tm.non_increasing(results["train"]["rmse"])
@given(
strategies.integers(10, 400),
strategies.integers(3, 8),
strategies.integers(4, 7)
)
@settings(deadline=None, print_blob=True)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical_missing(self, rows, cols, cats):
self.run_categorical_missing(rows, cols, cats, "approx")
self.run_categorical_missing(rows, cols, cats, "hist")
def run_adaptive(self, tree_method, weighted) -> None:
rng = np.random.RandomState(1994)
from sklearn.datasets import make_regression
from sklearn.utils import stats
n_samples = 256
X, y = make_regression(n_samples, 16, random_state=rng)
if weighted:
w = rng.normal(size=n_samples)
w -= w.min()
Xy = xgb.DMatrix(X, y, weight=w)
base_score = stats._weighted_percentile(y, w, percentile=50)
else:
Xy = xgb.DMatrix(X, y)
base_score = np.median(y)
booster_0 = xgb.train(
{
"tree_method": tree_method,
"base_score": base_score,
"objective": "reg:absoluteerror",
},
Xy,
num_boost_round=1,
)
booster_1 = xgb.train(
{"tree_method": tree_method, "objective": "reg:absoluteerror"},
Xy,
num_boost_round=1,
)
config_0 = json.loads(booster_0.save_config())
config_1 = json.loads(booster_1.save_config())
def get_score(config: Dict) -> float:
return float(config["learner"]["learner_model_param"]["base_score"])
assert get_score(config_0) == get_score(config_1)
raw_booster = booster_1.save_raw(raw_format="deprecated")
booster_2 = xgb.Booster(model_file=raw_booster)
config_2 = json.loads(booster_2.save_config())
assert get_score(config_1) == get_score(config_2)
raw_booster = booster_1.save_raw(raw_format="ubj")
booster_2 = xgb.Booster(model_file=raw_booster)
config_2 = json.loads(booster_2.save_config())
assert get_score(config_1) == get_score(config_2)
booster_0 = xgb.train(
{
"tree_method": tree_method,
"base_score": base_score + 1.0,
"objective": "reg:absoluteerror",
},
Xy,
num_boost_round=1,
)
config_0 = json.loads(booster_0.save_config())
np.testing.assert_allclose(get_score(config_0), get_score(config_1) + 1)
@pytest.mark.skipif(**tm.no_sklearn())
@pytest.mark.parametrize(
"tree_method,weighted", [
("approx", False), ("hist", False), ("approx", True), ("hist", True)
]
)
def test_adaptive(self, tree_method, weighted) -> None:
self.run_adaptive(tree_method, weighted)