90 lines
3.1 KiB
Python
Executable File
90 lines
3.1 KiB
Python
Executable File
#!/usr/bin/python
|
|
'''
|
|
Created on 1 Apr 2015
|
|
|
|
@author: Jamie Hall
|
|
'''
|
|
if __name__ == "__main__":
|
|
# NOTE: This *has* to be here and in the `__name__ == "__main__"` clause
|
|
# to run XGBoost in parallel, if XGBoost was built with OpenMP support.
|
|
# Otherwise, you can use fork, which is the default backend for joblib,
|
|
# and omit this.
|
|
from multiprocessing import set_start_method
|
|
set_start_method("forkserver")
|
|
|
|
import pickle
|
|
import os
|
|
import xgboost as xgb
|
|
|
|
import numpy as np
|
|
from sklearn.cross_validation import KFold
|
|
from sklearn.grid_search import GridSearchCV
|
|
from sklearn.metrics import confusion_matrix, mean_squared_error
|
|
from sklearn.datasets import load_iris, load_digits, load_boston
|
|
|
|
rng = np.random.RandomState(31337)
|
|
|
|
print("Zeros and Ones from the Digits dataset: binary classification")
|
|
digits = load_digits(2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf:
|
|
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
|
predictions = xgb_model.predict(X[test_index])
|
|
actuals = y[test_index]
|
|
print(confusion_matrix(actuals, predictions))
|
|
|
|
print("Iris: multiclass classification")
|
|
iris = load_iris()
|
|
y = iris['target']
|
|
X = iris['data']
|
|
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf:
|
|
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
|
|
predictions = xgb_model.predict(X[test_index])
|
|
actuals = y[test_index]
|
|
print(confusion_matrix(actuals, predictions))
|
|
|
|
print("Boston Housing: regression")
|
|
boston = load_boston()
|
|
y = boston['target']
|
|
X = boston['data']
|
|
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf:
|
|
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
|
|
predictions = xgb_model.predict(X[test_index])
|
|
actuals = y[test_index]
|
|
print(mean_squared_error(actuals, predictions))
|
|
|
|
print("Parameter optimization")
|
|
y = boston['target']
|
|
X = boston['data']
|
|
xgb_model = xgb.XGBRegressor()
|
|
clf = GridSearchCV(xgb_model,
|
|
{'max_depth': [2,4,6],
|
|
'n_estimators': [50,100,200]}, verbose=1)
|
|
clf.fit(X,y)
|
|
print(clf.best_score_)
|
|
print(clf.best_params_)
|
|
|
|
# The sklearn API models are picklable
|
|
print("Pickling sklearn API models")
|
|
# must open in binary format to pickle
|
|
pickle.dump(clf, open("best_boston.pkl", "wb"))
|
|
clf2 = pickle.load(open("best_boston.pkl", "rb"))
|
|
print(np.allclose(clf.predict(X), clf2.predict(X)))
|
|
|
|
print("Parallel Parameter optimization")
|
|
os.environ["OMP_NUM_THREADS"] = "1"
|
|
y = boston['target']
|
|
X = boston['data']
|
|
xgb_model = xgb.XGBRegressor()
|
|
clf = GridSearchCV(xgb_model,
|
|
{'max_depth': [2,4,6],
|
|
'n_estimators': [50,100,200]}, verbose=1,
|
|
n_jobs=2)
|
|
clf.fit(X, y)
|
|
print(clf.best_score_)
|
|
print(clf.best_params_)
|