xgboost/R-package/R/utils.R
2014-09-05 20:34:41 -07:00

197 lines
5.9 KiB
R

#' @importClassesFrom Matrix dgCMatrix dgeMatrix
#' @import methods
# depends on matrix
.onLoad <- function(libname, pkgname) {
library.dynam("xgboost", pkgname, libname)
}
.onUnload <- function(libpath) {
library.dynam.unload("xgboost", libpath)
}
# set information into dmatrix, this mutate dmatrix
xgb.setinfo <- function(dmat, name, info) {
if (class(dmat) != "xgb.DMatrix") {
stop("xgb.setinfo: first argument dtrain must be xgb.DMatrix")
}
if (name == "label") {
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
PACKAGE = "xgboost")
return(TRUE)
}
if (name == "weight") {
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
PACKAGE = "xgboost")
return(TRUE)
}
if (name == "base_margin") {
.Call("XGDMatrixSetInfo_R", dmat, name, as.numeric(info),
PACKAGE = "xgboost")
return(TRUE)
}
if (name == "group") {
.Call("XGDMatrixSetInfo_R", dmat, name, as.integer(info),
PACKAGE = "xgboost")
return(TRUE)
}
stop(paste("xgb.setinfo: unknown info name", name))
return(FALSE)
}
# construct a Booster from cachelist
xgb.Booster <- function(params = list(), cachelist = list(), modelfile = NULL) {
if (typeof(cachelist) != "list") {
stop("xgb.Booster: only accepts list of DMatrix as cachelist")
}
for (dm in cachelist) {
if (class(dm) != "xgb.DMatrix") {
stop("xgb.Booster: only accepts list of DMatrix as cachelist")
}
}
handle <- .Call("XGBoosterCreate_R", cachelist, PACKAGE = "xgboost")
if (length(params) != 0) {
for (i in 1:length(params)) {
p <- params[i]
.Call("XGBoosterSetParam_R", handle, names(p), as.character(p),
PACKAGE = "xgboost")
}
}
if (!is.null(modelfile)) {
if (typeof(modelfile) != "character") {
stop("xgb.Booster: modelfile must be character")
}
.Call("XGBoosterLoadModel_R", handle, modelfile, PACKAGE = "xgboost")
}
return(structure(handle, class = "xgb.Booster"))
}
# predict, depreciated
xgb.predict <- function(booster, dmat, outputmargin = FALSE) {
if (class(booster) != "xgb.Booster") {
stop("xgb.predict: first argument must be type xgb.Booster")
}
if (class(dmat) != "xgb.DMatrix") {
stop("xgb.predict: second argument must be type xgb.DMatrix")
}
ret <- .Call("XGBoosterPredict_R", booster, dmat, as.integer(outputmargin),
PACKAGE = "xgboost")
return(ret)
}
## ----the following are low level iteratively function, not needed if
## you do not want to use them ---------------------------------------
# get dmatrix from data, label
xgb.get.DMatrix <- function(data, label = NULL) {
inClass <- class(data)
if (inClass == "dgCMatrix" || inClass == "matrix") {
if (is.null(label)) {
stop("xgboost: need label when data is a matrix")
}
dtrain <- xgb.DMatrix(data, label = label)
} else {
if (!is.null(label)) {
warning("xgboost: label will be ignored.")
}
if (inClass == "character") {
dtrain <- xgb.DMatrix(data)
} else if (inClass == "xgb.DMatrix") {
dtrain <- data
} else {
stop("xgboost: Invalid input of data")
}
}
return (dtrain)
}
# iteratively update booster with customized statistics
xgb.iter.boost <- function(booster, dtrain, gpair) {
if (class(booster) != "xgb.Booster") {
stop("xgb.iter.update: first argument must be type xgb.Booster")
}
if (class(dtrain) != "xgb.DMatrix") {
stop("xgb.iter.update: second argument must be type xgb.DMatrix")
}
.Call("XGBoosterBoostOneIter_R", booster, dtrain, gpair$grad, gpair$hess,
PACKAGE = "xgboost")
return(TRUE)
}
# iteratively update booster with dtrain
xgb.iter.update <- function(booster, dtrain, iter, obj = NULL) {
if (class(booster) != "xgb.Booster") {
stop("xgb.iter.update: first argument must be type xgb.Booster")
}
if (class(dtrain) != "xgb.DMatrix") {
stop("xgb.iter.update: second argument must be type xgb.DMatrix")
}
if (is.null(obj)) {
.Call("XGBoosterUpdateOneIter_R", booster, as.integer(iter), dtrain,
PACKAGE = "xgboost")
} else {
pred <- xgb.predict(bst, dtrain)
gpair <- obj(pred, dtrain)
succ <- xgb.iter.boost(bst, dtrain, gpair)
}
return(TRUE)
}
# iteratively evaluate one iteration
xgb.iter.eval <- function(booster, watchlist, iter, feval = NULL) {
if (class(booster) != "xgb.Booster") {
stop("xgb.eval: first argument must be type xgb.Booster")
}
if (typeof(watchlist) != "list") {
stop("xgb.eval: only accepts list of DMatrix as watchlist")
}
for (w in watchlist) {
if (class(w) != "xgb.DMatrix") {
stop("xgb.eval: watch list can only contain xgb.DMatrix")
}
}
if (length(watchlist) != 0) {
if (is.null(feval)) {
evnames <- list()
for (i in 1:length(watchlist)) {
w <- watchlist[i]
if (length(names(w)) == 0) {
stop("xgb.eval: name tag must be presented for every elements in watchlist")
}
evnames <- append(evnames, names(w))
}
msg <- .Call("XGBoosterEvalOneIter_R", booster, as.integer(iter), watchlist,
evnames, PACKAGE = "xgboost")
} else {
msg <- paste("[", iter, "]", sep="")
for (j in 1:length(watchlist)) {
w <- watchlist[j]
if (length(names(w)) == 0) {
stop("xgb.eval: name tag must be presented for every elements in watchlist")
}
ret <- feval(xgb.predict(bst, w[[1]]), w[[1]])
msg <- paste(msg, "\t", names(w), "-", ret$metric, ":", ret$value, sep="")
}
}
} else {
msg <- ""
}
return(msg)
}
#------------------------------------------
# helper functions for cross validation
#
xgb.cv.mknfold <- function(dall, nfold, param, metrics=list(), fpreproc = NULL) {
randidx <- sample(1 : xgb.numrow(dall))
kstep <- length(randidx) / nfold
idset <- list()
for (i in 1:nfold) {
idset = append(idset, randidx[ ((i-1) * kstep + 1) : min(i * kstep, length(randidx)) ])
}
ret <- list()
for (k in 1:nfold) {
}
}