xgboost/tests/python/regression_test_utilities.py
Jiaming Yuan 7663de956c
Run training with empty DMatrix. (#4990)
This makes GPU Hist robust in distributed environment as some workers might not
be associated with any data in either training or evaluation.

* Disable rabit mock test for now: See #5012 .

* Disable dask-cudf test at prediction for now: See #5003

* Launch dask job for all workers despite they might not have any data.
* Check 0 rows in elementwise evaluation metrics.

   Using AUC and AUC-PR still throws an error.  See #4663 for a robust fix.

* Add tests for edge cases.
* Add `LaunchKernel` wrapper handling zero sized grid.
* Move some parts of allreducer into a cu file.
* Don't validate feature names when the booster is empty.

* Sync number of columns in DMatrix.

  As num_feature is required to be the same across all workers in data split
  mode.

* Filtering in dask interface now by default syncs all booster that's not
empty, instead of using rank 0.

* Fix Jenkins' GPU tests.

* Install dask-cuda from source in Jenkins' test.

  Now all tests are actually running.

* Restore GPU Hist tree synchronization test.

* Check UUID of running devices.

  The check is only performed on CUDA version >= 10.x, as 9.x doesn't have UUID field.

* Fix CMake policy and project variables.

  Use xgboost_SOURCE_DIR uniformly, add policy for CMake >= 3.13.

* Fix copying data to CPU

* Fix race condition in cpu predictor.

* Fix duplicated DMatrix construction.

* Don't download extra nccl in CI script.
2019-11-06 16:13:13 +08:00

165 lines
4.9 KiB
Python

from __future__ import print_function
import glob
import itertools as it
import numpy as np
import os
import sys
import xgboost as xgb
try:
from sklearn import datasets
from sklearn.preprocessing import scale
except ImportError:
None
class Dataset:
def __init__(self, name, get_dataset, objective, metric,
has_weights=False, use_external_memory=False):
self.name = name
self.objective = objective
self.metric = metric
if has_weights:
self.X, self.y, self.w = get_dataset()
else:
self.X, self.y = get_dataset()
self.w = None
self.use_external_memory = use_external_memory
def get_boston():
data = datasets.load_boston()
return data.data, data.target
def get_digits():
data = datasets.load_digits()
return data.data, data.target
def get_cancer():
data = datasets.load_breast_cancer()
return data.data, data.target
def get_sparse():
rng = np.random.RandomState(199)
n = 5000
sparsity = 0.75
X, y = datasets.make_regression(n, random_state=rng)
X = np.array([[0.0 if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X])
from scipy import sparse
X = sparse.csr_matrix(X)
return X, y
def get_sparse_weights():
return get_weights_regression(1, 10)
def get_small_weights():
return get_weights_regression(1e-6, 1e-5)
def get_weights_regression(min_weight, max_weight):
rng = np.random.RandomState(199)
n = 10000
sparsity = 0.25
X, y = datasets.make_regression(n, random_state=rng)
X = np.array([[np.nan if rng.uniform(0, 1) < sparsity else x
for x in x_row] for x_row in X])
w = np.array([rng.uniform(min_weight, max_weight) for i in range(n)])
return X, y, w
def train_dataset(dataset, param_in, num_rounds=10, scale_features=False):
param = param_in.copy()
param["objective"] = dataset.objective
if dataset.objective == "multi:softmax":
param["num_class"] = int(np.max(dataset.y) + 1)
param["eval_metric"] = dataset.metric
if scale_features:
X = scale(dataset.X, with_mean=isinstance(dataset.X, np.ndarray))
else:
X = dataset.X
if dataset.use_external_memory:
np.savetxt('tmptmp_1234.csv', np.hstack((dataset.y.reshape(len(dataset.y), 1), X)),
delimiter=',')
dtrain = xgb.DMatrix('tmptmp_1234.csv?format=csv&label_column=0#tmptmp_',
weight=dataset.w)
else:
dtrain = xgb.DMatrix(X, dataset.y, weight=dataset.w)
print("Training on dataset: " + dataset.name, file=sys.stderr)
print("Using parameters: " + str(param), file=sys.stderr)
res = {}
bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')],
evals_result=res, verbose_eval=False)
# Free the booster and dmatrix so we can delete temporary files
bst_copy = bst.copy()
del bst
del dtrain
# Cleanup temporary files
if dataset.use_external_memory:
for f in glob.glob("tmptmp_*"):
os.remove(f)
return {"dataset": dataset, "bst": bst_copy, "param": param.copy(),
"eval": res['train'][dataset.metric]}
def parameter_combinations(variable_param):
"""
Enumerate all possible combinations of parameters
"""
result = []
names = sorted(variable_param)
combinations = it.product(*(variable_param[Name] for Name in names))
for set in combinations:
param = {}
for i, name in enumerate(names):
param[name] = set[i]
result.append(param)
return result
def run_suite(param, num_rounds=10, select_datasets=None, scale_features=False):
"""
Run the given parameters on a range of datasets. Objective and eval metric will be automatically set
"""
datasets = [
Dataset("Boston", get_boston, "reg:squarederror", "rmse"),
Dataset("Digits", get_digits, "multi:softmax", "merror"),
Dataset("Cancer", get_cancer, "binary:logistic", "error"),
Dataset("Sparse regression", get_sparse, "reg:squarederror", "rmse"),
Dataset("Sparse regression with weights", get_sparse_weights,
"reg:squarederror", "rmse", has_weights=True),
Dataset("Small weights regression", get_small_weights,
"reg:squarederror", "rmse", has_weights=True),
Dataset("Boston External Memory", get_boston,
"reg:squarederror", "rmse",
use_external_memory=True)
]
results = [
]
for d in datasets:
if select_datasets is None or d.name in select_datasets:
results.append(
train_dataset(d, param, num_rounds=num_rounds, scale_features=scale_features))
return results
def non_increasing(L, tolerance):
return all((y - x) < tolerance for x, y in zip(L, L[1:]))
def assert_results_non_increasing(results, tolerance=1e-5):
for r in results:
assert non_increasing(r['eval'], tolerance), r