xgboost/tests/cpp/predictor/test_predictor.h
2023-07-13 19:30:25 +08:00

119 lines
4.0 KiB
C++

/**
* Copyright 2020-2023 by XGBoost Contributors
*/
#ifndef XGBOOST_TEST_PREDICTOR_H_
#define XGBOOST_TEST_PREDICTOR_H_
#include <xgboost/context.h> // for Context
#include <xgboost/predictor.h>
#include <cstddef>
#include <string>
#include "../../../src/gbm/gbtree_model.h" // for GBTreeModel
#include "../helpers.h"
namespace xgboost {
inline gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, Context const* ctx,
size_t n_classes = 1) {
gbm::GBTreeModel model(param, ctx);
for (size_t i = 0; i < n_classes; ++i) {
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
if (i == 0) {
(*trees.back())[0].SetLeaf(1.5f);
(*trees.back()).Stat(0).sum_hess = 1.0f;
}
model.CommitModelGroup(std::move(trees), i);
}
return model;
}
inline auto CreatePredictorForTest(Context const* ctx) {
if (ctx->IsCPU()) {
return Predictor::Create("cpu_predictor", ctx);
} else {
return Predictor::Create("gpu_predictor", ctx);
}
}
// fixme: cpu test
template <typename Page>
void TestPredictionFromGradientIndex(Context const* ctx, size_t rows, size_t cols,
std::shared_ptr<DMatrix> p_hist) {
constexpr size_t kClasses { 3 };
LearnerModelParam mparam{MakeMP(cols, .5, kClasses)};
auto cuda_ctx = MakeCUDACtx(0);
std::unique_ptr<Predictor> predictor =
std::unique_ptr<Predictor>(CreatePredictorForTest(&cuda_ctx));
predictor->Configure({});
gbm::GBTreeModel model = CreateTestModel(&mparam, ctx, kClasses);
{
auto p_precise = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
PredictionCacheEntry approx_out_predictions;
predictor->InitOutPredictions(p_hist->Info(), &approx_out_predictions.predictions, model);
predictor->PredictBatch(p_hist.get(), &approx_out_predictions, model, 0);
PredictionCacheEntry precise_out_predictions;
predictor->InitOutPredictions(p_precise->Info(), &precise_out_predictions.predictions, model);
predictor->PredictBatch(p_precise.get(), &precise_out_predictions, model, 0);
for (size_t i = 0; i < rows; ++i) {
CHECK_EQ(approx_out_predictions.predictions.HostVector()[i],
precise_out_predictions.predictions.HostVector()[i]);
}
}
{
// Predictor should never try to create the histogram index by itself. As only
// histogram index from training data is valid and predictor doesn't known which
// matrix is used for training.
auto p_dmat = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
PredictionCacheEntry precise_out_predictions;
predictor->InitOutPredictions(p_dmat->Info(), &precise_out_predictions.predictions, model);
predictor->PredictBatch(p_dmat.get(), &precise_out_predictions, model, 0);
CHECK(!p_dmat->PageExists<Page>());
}
}
// p_full and p_hist should come from the same data set.
void TestTrainingPrediction(Context const* ctx, size_t rows, size_t bins,
std::shared_ptr<DMatrix> p_full, std::shared_ptr<DMatrix> p_hist);
void TestInplacePrediction(Context const* ctx, std::shared_ptr<DMatrix> x, bst_row_t rows,
bst_feature_t cols);
void TestPredictionWithLesserFeatures(Context const* ctx);
void TestPredictionDeviceAccess();
void TestCategoricalPrediction(Context const* ctx, bool is_column_split);
void TestCategoricalPredictionColumnSplit(Context const* ctx);
void TestPredictionWithLesserFeaturesColumnSplit(Context const* ctx);
void TestCategoricalPredictLeaf(Context const* ctx, bool is_column_split);
void TestCategoricalPredictLeafColumnSplit(Context const* ctx);
void TestIterationRange(Context const* ctx);
void TestIterationRangeColumnSplit(Context const* ctx);
void TestSparsePrediction(Context const* ctx, float sparsity);
void TestSparsePredictionColumnSplit(Context const* ctx, float sparsity);
void TestVectorLeafPrediction(Context const* ctx);
} // namespace xgboost
#endif // XGBOOST_TEST_PREDICTOR_H_