* Don't set_params at the end of set_state. * Also fix another issue found in dask prediction. * Add note about prediction. Don't support other prediction modes at the moment.
49 lines
907 B
Python
49 lines
907 B
Python
import pickle
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
import os
|
|
|
|
|
|
kRows = 100
|
|
kCols = 10
|
|
|
|
|
|
def generate_data():
|
|
X = np.random.randn(kRows, kCols)
|
|
y = np.random.randn(kRows)
|
|
return X, y
|
|
|
|
|
|
def test_model_pickling():
|
|
xgb_params = {
|
|
'verbosity': 0,
|
|
'nthread': 1,
|
|
'tree_method': 'hist'
|
|
}
|
|
|
|
X, y = generate_data()
|
|
dtrain = xgb.DMatrix(X, y)
|
|
bst = xgb.train(xgb_params, dtrain)
|
|
|
|
dump_0 = bst.get_dump(dump_format='json')
|
|
assert dump_0
|
|
|
|
filename = 'model.pkl'
|
|
|
|
with open(filename, 'wb') as fd:
|
|
pickle.dump(bst, fd)
|
|
|
|
with open(filename, 'rb') as fd:
|
|
bst = pickle.load(fd)
|
|
|
|
with open(filename, 'wb') as fd:
|
|
pickle.dump(bst, fd)
|
|
|
|
with open(filename, 'rb') as fd:
|
|
bst = pickle.load(fd)
|
|
|
|
assert bst.get_dump(dump_format='json') == dump_0
|
|
|
|
if os.path.exists(filename):
|
|
os.remove(filename)
|