1204 lines
50 KiB
Python
1204 lines
50 KiB
Python
# coding: utf-8
|
|
# pylint: disable=too-many-arguments, too-many-locals, invalid-name, fixme, E0012, R0912, C0302
|
|
"""Scikit-Learn Wrapper interface for XGBoost."""
|
|
import warnings
|
|
import json
|
|
import numpy as np
|
|
from .core import Booster, DMatrix, XGBoostError
|
|
from .training import train
|
|
|
|
# Do not use class names on scikit-learn directly.
|
|
# Re-define the classes on .compat to guarantee the behavior without scikit-learn
|
|
from .compat import (SKLEARN_INSTALLED, XGBModelBase,
|
|
XGBClassifierBase, XGBRegressorBase, XGBLabelEncoder)
|
|
|
|
|
|
def _objective_decorator(func):
|
|
"""Decorate an objective function
|
|
|
|
Converts an objective function using the typical sklearn metrics
|
|
signature so that it is usable with ``xgboost.training.train``
|
|
|
|
Parameters
|
|
----------
|
|
func: callable
|
|
Expects a callable with signature ``func(y_true, y_pred)``:
|
|
|
|
y_true: array_like of shape [n_samples]
|
|
The target values
|
|
y_pred: array_like of shape [n_samples]
|
|
The predicted values
|
|
|
|
Returns
|
|
-------
|
|
new_func: callable
|
|
The new objective function as expected by ``xgboost.training.train``.
|
|
The signature is ``new_func(preds, dmatrix)``:
|
|
|
|
preds: array_like, shape [n_samples]
|
|
The predicted values
|
|
dmatrix: ``DMatrix``
|
|
The training set from which the labels will be extracted using
|
|
``dmatrix.get_label()``
|
|
"""
|
|
def inner(preds, dmatrix):
|
|
"""internal function"""
|
|
labels = dmatrix.get_label()
|
|
return func(labels, preds)
|
|
return inner
|
|
|
|
|
|
class XGBModel(XGBModelBase):
|
|
# pylint: disable=too-many-arguments, too-many-instance-attributes, invalid-name
|
|
"""Implementation of the Scikit-Learn API for XGBoost.
|
|
|
|
Parameters
|
|
----------
|
|
max_depth : int
|
|
Maximum tree depth for base learners.
|
|
learning_rate : float
|
|
Boosting learning rate (xgb's "eta")
|
|
n_estimators : int
|
|
Number of trees to fit.
|
|
verbosity : int
|
|
The degree of verbosity. Valid values are 0 (silent) - 3 (debug).
|
|
objective : string or callable
|
|
Specify the learning task and the corresponding learning objective or
|
|
a custom objective function to be used (see note below).
|
|
booster: string
|
|
Specify which booster to use: gbtree, gblinear or dart.
|
|
tree_method: string
|
|
Specify which tree method to use. Default to auto. If this parameter
|
|
is set to default, XGBoost will choose the most conservative option
|
|
available. It's recommended to study this option from parameters
|
|
document.
|
|
n_jobs : int
|
|
Number of parallel threads used to run xgboost.
|
|
gamma : float
|
|
Minimum loss reduction required to make a further partition on a leaf node of the tree.
|
|
min_child_weight : int
|
|
Minimum sum of instance weight(hessian) needed in a child.
|
|
max_delta_step : int
|
|
Maximum delta step we allow each tree's weight estimation to be.
|
|
subsample : float
|
|
Subsample ratio of the training instance.
|
|
colsample_bytree : float
|
|
Subsample ratio of columns when constructing each tree.
|
|
colsample_bylevel : float
|
|
Subsample ratio of columns for each level.
|
|
colsample_bynode : float
|
|
Subsample ratio of columns for each split.
|
|
reg_alpha : float (xgb's alpha)
|
|
L1 regularization term on weights
|
|
reg_lambda : float (xgb's lambda)
|
|
L2 regularization term on weights
|
|
scale_pos_weight : float
|
|
Balancing of positive and negative weights.
|
|
base_score:
|
|
The initial prediction score of all instances, global bias.
|
|
random_state : int
|
|
Random number seed.
|
|
|
|
.. note::
|
|
|
|
Using gblinear booster with shotgun updater is nondeterministic as
|
|
it uses Hogwild algorithm.
|
|
|
|
missing : float, optional
|
|
Value in the data which needs to be present as a missing value. If
|
|
None, defaults to np.nan.
|
|
num_parallel_tree: int
|
|
Used for boosting random forest.
|
|
importance_type: string, default "gain"
|
|
The feature importance type for the feature_importances\\_ property:
|
|
either "gain", "weight", "cover", "total_gain" or "total_cover".
|
|
\\*\\*kwargs : dict, optional
|
|
Keyword arguments for XGBoost Booster object. Full documentation of parameters can
|
|
be found here: https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst.
|
|
Attempting to set a parameter via the constructor args and \\*\\*kwargs dict simultaneously
|
|
will result in a TypeError.
|
|
|
|
.. note:: \\*\\*kwargs unsupported by scikit-learn
|
|
|
|
\\*\\*kwargs is unsupported by scikit-learn. We do not guarantee that parameters
|
|
passed via this argument will interact properly with scikit-learn.
|
|
|
|
Note
|
|
----
|
|
A custom objective function can be provided for the ``objective``
|
|
parameter. In this case, it should have the signature
|
|
``objective(y_true, y_pred) -> grad, hess``:
|
|
|
|
y_true: array_like of shape [n_samples]
|
|
The target values
|
|
y_pred: array_like of shape [n_samples]
|
|
The predicted values
|
|
|
|
grad: array_like of shape [n_samples]
|
|
The value of the gradient for each sample point.
|
|
hess: array_like of shape [n_samples]
|
|
The value of the second derivative for each sample point
|
|
|
|
"""
|
|
|
|
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100,
|
|
verbosity=1, objective="reg:squarederror",
|
|
booster='gbtree', tree_method='auto', n_jobs=1, gamma=0,
|
|
min_child_weight=1, max_delta_step=0, subsample=1,
|
|
colsample_bytree=1, colsample_bylevel=1, colsample_bynode=1,
|
|
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5,
|
|
random_state=0, missing=None, num_parallel_tree=1,
|
|
importance_type="gain", **kwargs):
|
|
if not SKLEARN_INSTALLED:
|
|
raise XGBoostError(
|
|
'sklearn needs to be installed in order to use this module')
|
|
self.max_depth = max_depth
|
|
self.learning_rate = learning_rate
|
|
self.n_estimators = n_estimators
|
|
self.verbosity = verbosity
|
|
self.objective = objective
|
|
self.booster = booster
|
|
self.tree_method = tree_method
|
|
self.gamma = gamma
|
|
self.min_child_weight = min_child_weight
|
|
self.max_delta_step = max_delta_step
|
|
self.subsample = subsample
|
|
self.colsample_bytree = colsample_bytree
|
|
self.colsample_bylevel = colsample_bylevel
|
|
self.colsample_bynode = colsample_bynode
|
|
self.reg_alpha = reg_alpha
|
|
self.reg_lambda = reg_lambda
|
|
self.scale_pos_weight = scale_pos_weight
|
|
self.base_score = base_score
|
|
self.missing = missing if missing is not None else np.nan
|
|
self.num_parallel_tree = num_parallel_tree
|
|
self.kwargs = kwargs
|
|
self._Booster = None
|
|
self.random_state = random_state
|
|
self.n_jobs = n_jobs
|
|
self.importance_type = importance_type
|
|
|
|
def __setstate__(self, state):
|
|
# backward compatibility code
|
|
# load booster from raw if it is raw
|
|
# the booster now support pickle
|
|
bst = state["_Booster"]
|
|
if bst is not None and not isinstance(bst, Booster):
|
|
state["_Booster"] = Booster(model_file=bst)
|
|
self.__dict__.update(state)
|
|
|
|
def get_booster(self):
|
|
"""Get the underlying xgboost Booster of this model.
|
|
|
|
This will raise an exception when fit was not called
|
|
|
|
Returns
|
|
-------
|
|
booster : a xgboost booster of underlying model
|
|
"""
|
|
if self._Booster is None:
|
|
raise XGBoostError('need to call fit or load_model beforehand')
|
|
return self._Booster
|
|
|
|
def set_params(self, **params):
|
|
"""Set the parameters of this estimator.
|
|
Modification of the sklearn method to allow unknown kwargs. This allows using
|
|
the full range of xgboost parameters that are not defined as member variables
|
|
in sklearn grid search.
|
|
Returns
|
|
-------
|
|
self
|
|
"""
|
|
if not params:
|
|
# Simple optimization to gain speed (inspect is slow)
|
|
return self
|
|
|
|
for key, value in params.items():
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
else:
|
|
self.kwargs[key] = value
|
|
|
|
return self
|
|
|
|
def get_params(self, deep=False):
|
|
"""Get parameters."""
|
|
params = super(XGBModel, self).get_params(deep=deep)
|
|
if isinstance(self.kwargs, dict): # if kwargs is a dict, update params accordingly
|
|
params.update(self.kwargs)
|
|
if params['missing'] is np.nan:
|
|
params['missing'] = None # sklearn doesn't handle nan. see #4725
|
|
if not params.get('eval_metric', True):
|
|
del params['eval_metric'] # don't give as None param to Booster
|
|
return params
|
|
|
|
def get_xgb_params(self):
|
|
"""Get xgboost type parameters."""
|
|
xgb_params = self.get_params()
|
|
return xgb_params
|
|
|
|
def get_num_boosting_rounds(self):
|
|
"""Gets the number of xgboost boosting rounds."""
|
|
return self.n_estimators
|
|
|
|
def save_model(self, fname):
|
|
"""
|
|
Save the model to a file.
|
|
|
|
The model is saved in an XGBoost internal binary format which is
|
|
universal among the various XGBoost interfaces. Auxiliary attributes of
|
|
the Python Booster object (such as feature names) will not be loaded.
|
|
Label encodings (text labels to numeric labels) will be also lost.
|
|
**If you are using only the Python interface, we recommend pickling the
|
|
model object for best results.**
|
|
|
|
Parameters
|
|
----------
|
|
fname : string
|
|
Output file name
|
|
"""
|
|
warnings.warn("save_model: Useful attributes in the Python " +
|
|
"object {} will be lost. ".format(type(self).__name__) +
|
|
"If you did not mean to export the model to " +
|
|
"a non-Python binding of XGBoost, consider " +
|
|
"using `pickle` or `joblib` to save your model.",
|
|
Warning)
|
|
self.get_booster().save_model(fname)
|
|
|
|
def load_model(self, fname):
|
|
"""
|
|
Load the model from a file.
|
|
|
|
The model is loaded from an XGBoost internal binary format which is
|
|
universal among the various XGBoost interfaces. Auxiliary attributes of
|
|
the Python Booster object (such as feature names) will not be loaded.
|
|
Label encodings (text labels to numeric labels) will be also lost.
|
|
**If you are using only the Python interface, we recommend pickling the
|
|
model object for best results.**
|
|
|
|
Parameters
|
|
----------
|
|
fname : string or a memory buffer
|
|
Input file name or memory buffer(see also save_raw)
|
|
"""
|
|
if self._Booster is None:
|
|
self._Booster = Booster({'n_jobs': self.n_jobs})
|
|
self._Booster.load_model(fname)
|
|
|
|
def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None,
|
|
early_stopping_rounds=None, verbose=True, xgb_model=None,
|
|
sample_weight_eval_set=None, callbacks=None):
|
|
# pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init
|
|
"""Fit gradient boosting model
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like
|
|
Feature matrix
|
|
y : array_like
|
|
Labels
|
|
sample_weight : array_like
|
|
instance weights
|
|
eval_set : list, optional
|
|
A list of (X, y) tuple pairs to use as validation sets, for which
|
|
metrics will be computed.
|
|
Validation metrics will help us track the performance of the model.
|
|
sample_weight_eval_set : list, optional
|
|
A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of
|
|
instance weights on the i-th validation set.
|
|
eval_metric : str, list of str, or callable, optional
|
|
If a str, should be a built-in evaluation metric to use. See
|
|
doc/parameter.rst.
|
|
If a list of str, should be the list of multiple built-in evaluation metrics
|
|
to use.
|
|
If callable, a custom evaluation metric. The call
|
|
signature is ``func(y_predicted, y_true)`` where ``y_true`` will be a
|
|
DMatrix object such that you may need to call the ``get_label``
|
|
method. It must return a str, value pair where the str is a name
|
|
for the evaluation and value is the value of the evaluation
|
|
function. The callable custom objective is always minimized.
|
|
early_stopping_rounds : int
|
|
Activates early stopping. Validation metric needs to improve at least once in
|
|
every **early_stopping_rounds** round(s) to continue training.
|
|
Requires at least one item in **eval_set**.
|
|
The method returns the model from the last iteration (not the best one).
|
|
If there's more than one item in **eval_set**, the last entry will be used
|
|
for early stopping.
|
|
If there's more than one metric in **eval_metric**, the last metric will be
|
|
used for early stopping.
|
|
If early stopping occurs, the model will have three additional fields:
|
|
``clf.best_score``, ``clf.best_iteration`` and ``clf.best_ntree_limit``.
|
|
verbose : bool
|
|
If `verbose` and an evaluation set is used, writes the evaluation
|
|
metric measured on the validation set to stderr.
|
|
xgb_model : str
|
|
file name of stored XGBoost model or 'Booster' instance XGBoost model to be
|
|
loaded before training (allows training continuation).
|
|
callbacks : list of callback functions
|
|
List of callback functions that are applied at end of each iteration.
|
|
It is possible to use predefined callbacks by using :ref:`callback_api`.
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
[xgb.callback.reset_learning_rate(custom_rates)]
|
|
"""
|
|
if sample_weight is not None:
|
|
trainDmatrix = DMatrix(X, label=y, weight=sample_weight,
|
|
missing=self.missing,
|
|
nthread=self.n_jobs)
|
|
else:
|
|
trainDmatrix = DMatrix(X, label=y, missing=self.missing,
|
|
nthread=self.n_jobs)
|
|
|
|
evals_result = {}
|
|
|
|
if eval_set is not None:
|
|
if not isinstance(eval_set[0], (list, tuple)):
|
|
raise TypeError('Unexpected input type for `eval_set`')
|
|
if sample_weight_eval_set is None:
|
|
sample_weight_eval_set = [None] * len(eval_set)
|
|
evals = list(
|
|
DMatrix(eval_set[i][0], label=eval_set[i][1], missing=self.missing,
|
|
weight=sample_weight_eval_set[i], nthread=self.n_jobs)
|
|
for i in range(len(eval_set)))
|
|
evals = list(zip(evals, ["validation_{}".format(i) for i in
|
|
range(len(evals))]))
|
|
else:
|
|
evals = ()
|
|
|
|
params = self.get_xgb_params()
|
|
|
|
if callable(self.objective):
|
|
obj = _objective_decorator(self.objective)
|
|
params["objective"] = "reg:squarederror"
|
|
else:
|
|
obj = None
|
|
|
|
feval = eval_metric if callable(eval_metric) else None
|
|
if eval_metric is not None:
|
|
if callable(eval_metric):
|
|
eval_metric = None
|
|
else:
|
|
params.update({'eval_metric': eval_metric})
|
|
|
|
self._Booster = train(params, trainDmatrix,
|
|
self.get_num_boosting_rounds(), evals=evals,
|
|
early_stopping_rounds=early_stopping_rounds,
|
|
evals_result=evals_result, obj=obj, feval=feval,
|
|
verbose_eval=verbose, xgb_model=xgb_model,
|
|
callbacks=callbacks)
|
|
|
|
if evals_result:
|
|
for val in evals_result.items():
|
|
evals_result_key = list(val[1].keys())[0]
|
|
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
|
|
self.evals_result_ = evals_result
|
|
|
|
if early_stopping_rounds is not None:
|
|
self.best_score = self._Booster.best_score
|
|
self.best_iteration = self._Booster.best_iteration
|
|
self.best_ntree_limit = self._Booster.best_ntree_limit
|
|
return self
|
|
|
|
def predict(self, data, output_margin=False, ntree_limit=None, validate_features=True):
|
|
"""
|
|
Predict with `data`.
|
|
|
|
.. note:: This function is not thread safe.
|
|
|
|
For each booster object, predict can only be called from one thread.
|
|
If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
|
|
of model object and then call ``predict()``.
|
|
|
|
.. note:: Using ``predict()`` with DART booster
|
|
|
|
If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only
|
|
some of the trees will be evaluated. This will produce incorrect results if ``data`` is
|
|
not the training data. To obtain correct results on test sets, set ``ntree_limit`` to
|
|
a nonzero value, e.g.
|
|
|
|
.. code-block:: python
|
|
|
|
preds = bst.predict(dtest, ntree_limit=num_round)
|
|
|
|
Parameters
|
|
----------
|
|
data : numpy.array/scipy.sparse
|
|
Data to predict with
|
|
output_margin : bool
|
|
Whether to output the raw untransformed margin value.
|
|
ntree_limit : int
|
|
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
|
|
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
|
|
validate_features : bool
|
|
When this is True, validate that the Booster's and data's feature_names are identical.
|
|
Otherwise, it is assumed that the feature_names are the same.
|
|
Returns
|
|
-------
|
|
prediction : numpy array
|
|
"""
|
|
# pylint: disable=missing-docstring,invalid-name
|
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
|
# get ntree_limit to use - if none specified, default to
|
|
# best_ntree_limit if defined, otherwise 0.
|
|
if ntree_limit is None:
|
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
|
return self.get_booster().predict(test_dmatrix,
|
|
output_margin=output_margin,
|
|
ntree_limit=ntree_limit,
|
|
validate_features=validate_features)
|
|
|
|
def apply(self, X, ntree_limit=0):
|
|
"""Return the predicted leaf every tree for each sample.
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like, shape=[n_samples, n_features]
|
|
Input features matrix.
|
|
|
|
ntree_limit : int
|
|
Limit number of trees in the prediction; defaults to 0 (use all trees).
|
|
|
|
Returns
|
|
-------
|
|
X_leaves : array_like, shape=[n_samples, n_trees]
|
|
For each datapoint x in X and for each tree, return the index of the
|
|
leaf x ends up in. Leaves are numbered within
|
|
``[0; 2**(self.max_depth+1))``, possibly with gaps in the numbering.
|
|
"""
|
|
test_dmatrix = DMatrix(X, missing=self.missing, nthread=self.n_jobs)
|
|
return self.get_booster().predict(test_dmatrix,
|
|
pred_leaf=True,
|
|
ntree_limit=ntree_limit)
|
|
|
|
def evals_result(self):
|
|
"""Return the evaluation results.
|
|
|
|
If **eval_set** is passed to the `fit` function, you can call
|
|
``evals_result()`` to get evaluation results for all passed **eval_sets**.
|
|
When **eval_metric** is also passed to the `fit` function, the
|
|
**evals_result** will contain the **eval_metrics** passed to the `fit` function.
|
|
|
|
Returns
|
|
-------
|
|
evals_result : dictionary
|
|
|
|
Example
|
|
-------
|
|
|
|
.. code-block:: python
|
|
|
|
param_dist = {'objective':'binary:logistic', 'n_estimators':2}
|
|
|
|
clf = xgb.XGBModel(**param_dist)
|
|
|
|
clf.fit(X_train, y_train,
|
|
eval_set=[(X_train, y_train), (X_test, y_test)],
|
|
eval_metric='logloss',
|
|
verbose=True)
|
|
|
|
evals_result = clf.evals_result()
|
|
|
|
The variable **evals_result** will contain:
|
|
|
|
.. code-block:: python
|
|
|
|
{'validation_0': {'logloss': ['0.604835', '0.531479']},
|
|
'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
|
"""
|
|
if self.evals_result_:
|
|
evals_result = self.evals_result_
|
|
else:
|
|
raise XGBoostError('No results.')
|
|
|
|
return evals_result
|
|
|
|
@property
|
|
def feature_importances_(self):
|
|
"""
|
|
Feature importances property
|
|
|
|
.. note:: Feature importance is defined only for tree boosters
|
|
|
|
Feature importance is only defined when the decision tree model is chosen as base
|
|
learner (`booster=gbtree`). It is not defined for other base learner types, such
|
|
as linear learners (`booster=gblinear`).
|
|
|
|
Returns
|
|
-------
|
|
feature_importances_ : array of shape ``[n_features]``
|
|
|
|
"""
|
|
if getattr(self, 'booster', None) is not None and self.booster not in {'gbtree', 'dart'}:
|
|
raise AttributeError('Feature importance is not defined for Booster type {}'
|
|
.format(self.booster))
|
|
b = self.get_booster()
|
|
score = b.get_score(importance_type=self.importance_type)
|
|
all_features = [score.get(f, 0.) for f in b.feature_names]
|
|
all_features = np.array(all_features, dtype=np.float32)
|
|
return all_features / all_features.sum()
|
|
|
|
@property
|
|
def coef_(self):
|
|
"""
|
|
Coefficients property
|
|
|
|
.. note:: Coefficients are defined only for linear learners
|
|
|
|
Coefficients are only defined when the linear model is chosen as base
|
|
learner (`booster=gblinear`). It is not defined for other base learner types, such
|
|
as tree learners (`booster=gbtree`).
|
|
|
|
Returns
|
|
-------
|
|
coef_ : array of shape ``[n_features]`` or ``[n_classes, n_features]``
|
|
"""
|
|
if getattr(self, 'booster', None) is not None and self.booster != 'gblinear':
|
|
raise AttributeError('Coefficients are not defined for Booster type {}'
|
|
.format(self.booster))
|
|
b = self.get_booster()
|
|
coef = np.array(json.loads(b.get_dump(dump_format='json')[0])['weight'])
|
|
# Logic for multiclass classification
|
|
n_classes = getattr(self, 'n_classes_', None)
|
|
if n_classes is not None:
|
|
if n_classes > 2:
|
|
assert len(coef.shape) == 1
|
|
assert coef.shape[0] % n_classes == 0
|
|
coef = coef.reshape((n_classes, -1))
|
|
return coef
|
|
|
|
@property
|
|
def intercept_(self):
|
|
"""
|
|
Intercept (bias) property
|
|
|
|
.. note:: Intercept is defined only for linear learners
|
|
|
|
Intercept (bias) is only defined when the linear model is chosen as base
|
|
learner (`booster=gblinear`). It is not defined for other base learner types, such
|
|
as tree learners (`booster=gbtree`).
|
|
|
|
Returns
|
|
-------
|
|
intercept_ : array of shape ``(1,)`` or ``[n_classes]``
|
|
"""
|
|
if getattr(self, 'booster', None) is not None and self.booster != 'gblinear':
|
|
raise AttributeError('Intercept (bias) is not defined for Booster type {}'
|
|
.format(self.booster))
|
|
b = self.get_booster()
|
|
return np.array(json.loads(b.get_dump(dump_format='json')[0])['bias'])
|
|
|
|
|
|
class XGBClassifier(XGBModel, XGBClassifierBase):
|
|
# pylint: disable=missing-docstring,too-many-arguments,invalid-name,too-many-instance-attributes
|
|
__doc__ = "Implementation of the scikit-learn API for XGBoost classification.\n\n" \
|
|
+ '\n'.join(XGBModel.__doc__.split('\n')[2:])
|
|
|
|
def __init__(self, max_depth=3, learning_rate=0.1,
|
|
n_estimators=100, verbosity=1,
|
|
objective="binary:logistic", booster='gbtree',
|
|
tree_method='auto', n_jobs=1, gpu_id=-1, gamma=0,
|
|
min_child_weight=1, max_delta_step=0, subsample=1,
|
|
colsample_bytree=1, colsample_bylevel=1, colsample_bynode=1,
|
|
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5,
|
|
random_state=0, missing=None, **kwargs):
|
|
super(XGBClassifier, self).__init__(
|
|
max_depth=max_depth, learning_rate=learning_rate,
|
|
n_estimators=n_estimators, verbosity=verbosity,
|
|
objective=objective, booster=booster, tree_method=tree_method,
|
|
n_jobs=n_jobs, gpu_id=gpu_id, gamma=gamma,
|
|
min_child_weight=min_child_weight,
|
|
max_delta_step=max_delta_step, subsample=subsample,
|
|
colsample_bytree=colsample_bytree,
|
|
colsample_bylevel=colsample_bylevel,
|
|
colsample_bynode=colsample_bynode,
|
|
reg_alpha=reg_alpha, reg_lambda=reg_lambda,
|
|
scale_pos_weight=scale_pos_weight,
|
|
base_score=base_score, random_state=random_state, missing=missing,
|
|
**kwargs)
|
|
|
|
def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None,
|
|
early_stopping_rounds=None, verbose=True, xgb_model=None,
|
|
sample_weight_eval_set=None, callbacks=None):
|
|
# pylint: disable = attribute-defined-outside-init,arguments-differ
|
|
|
|
evals_result = {}
|
|
self.classes_ = np.unique(y)
|
|
self.n_classes_ = len(self.classes_)
|
|
|
|
xgb_options = self.get_xgb_params()
|
|
|
|
if callable(self.objective):
|
|
obj = _objective_decorator(self.objective)
|
|
# Use default value. Is it really not used ?
|
|
xgb_options["objective"] = "binary:logistic"
|
|
else:
|
|
obj = None
|
|
|
|
if self.n_classes_ > 2:
|
|
# Switch to using a multiclass objective in the underlying XGB instance
|
|
xgb_options["objective"] = "multi:softprob"
|
|
xgb_options['num_class'] = self.n_classes_
|
|
|
|
feval = eval_metric if callable(eval_metric) else None
|
|
if eval_metric is not None:
|
|
if callable(eval_metric):
|
|
eval_metric = None
|
|
else:
|
|
xgb_options.update({"eval_metric": eval_metric})
|
|
|
|
self._le = XGBLabelEncoder().fit(y)
|
|
training_labels = self._le.transform(y)
|
|
|
|
if eval_set is not None:
|
|
if sample_weight_eval_set is None:
|
|
sample_weight_eval_set = [None] * len(eval_set)
|
|
evals = list(
|
|
DMatrix(eval_set[i][0], label=self._le.transform(eval_set[i][1]),
|
|
missing=self.missing, weight=sample_weight_eval_set[i],
|
|
nthread=self.n_jobs)
|
|
for i in range(len(eval_set))
|
|
)
|
|
nevals = len(evals)
|
|
eval_names = ["validation_{}".format(i) for i in range(nevals)]
|
|
evals = list(zip(evals, eval_names))
|
|
else:
|
|
evals = ()
|
|
|
|
if len(X.shape) != 2:
|
|
# Simply raise an error here since there might be many
|
|
# different ways of reshaping
|
|
raise ValueError(
|
|
'Please reshape the input data X into 2-dimensional matrix.')
|
|
self._features_count = X.shape[1]
|
|
|
|
if sample_weight is not None:
|
|
train_dmatrix = DMatrix(X, label=training_labels, weight=sample_weight,
|
|
missing=self.missing, nthread=self.n_jobs)
|
|
else:
|
|
train_dmatrix = DMatrix(X, label=training_labels,
|
|
missing=self.missing, nthread=self.n_jobs)
|
|
|
|
self._Booster = train(xgb_options, train_dmatrix, self.get_num_boosting_rounds(),
|
|
evals=evals, early_stopping_rounds=early_stopping_rounds,
|
|
evals_result=evals_result, obj=obj, feval=feval,
|
|
verbose_eval=verbose, xgb_model=xgb_model,
|
|
callbacks=callbacks)
|
|
|
|
self.objective = xgb_options["objective"]
|
|
if evals_result:
|
|
for val in evals_result.items():
|
|
evals_result_key = list(val[1].keys())[0]
|
|
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
|
|
self.evals_result_ = evals_result
|
|
|
|
if early_stopping_rounds is not None:
|
|
self.best_score = self._Booster.best_score
|
|
self.best_iteration = self._Booster.best_iteration
|
|
self.best_ntree_limit = self._Booster.best_ntree_limit
|
|
|
|
return self
|
|
|
|
fit.__doc__ = XGBModel.fit.__doc__.replace('Fit gradient boosting model',
|
|
'Fit gradient boosting classifier', 1)
|
|
|
|
def predict(self, data, output_margin=False, ntree_limit=None, validate_features=True):
|
|
"""
|
|
Predict with `data`.
|
|
|
|
.. note:: This function is not thread safe.
|
|
|
|
For each booster object, predict can only be called from one thread.
|
|
If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
|
|
of model object and then call ``predict()``.
|
|
|
|
.. note:: Using ``predict()`` with DART booster
|
|
|
|
If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only
|
|
some of the trees will be evaluated. This will produce incorrect results if ``data`` is
|
|
not the training data. To obtain correct results on test sets, set ``ntree_limit`` to
|
|
a nonzero value, e.g.
|
|
|
|
.. code-block:: python
|
|
|
|
preds = bst.predict(dtest, ntree_limit=num_round)
|
|
|
|
Parameters
|
|
----------
|
|
data : DMatrix
|
|
The dmatrix storing the input.
|
|
output_margin : bool
|
|
Whether to output the raw untransformed margin value.
|
|
ntree_limit : int
|
|
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
|
|
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
|
|
validate_features : bool
|
|
When this is True, validate that the Booster's and data's feature_names are identical.
|
|
Otherwise, it is assumed that the feature_names are the same.
|
|
Returns
|
|
-------
|
|
prediction : numpy array
|
|
"""
|
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
|
if ntree_limit is None:
|
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
|
class_probs = self.get_booster().predict(test_dmatrix,
|
|
output_margin=output_margin,
|
|
ntree_limit=ntree_limit,
|
|
validate_features=validate_features)
|
|
if output_margin:
|
|
# If output_margin is active, simply return the scores
|
|
return class_probs
|
|
|
|
if len(class_probs.shape) > 1:
|
|
column_indexes = np.argmax(class_probs, axis=1)
|
|
else:
|
|
column_indexes = np.repeat(0, class_probs.shape[0])
|
|
column_indexes[class_probs > 0.5] = 1
|
|
return self._le.inverse_transform(column_indexes)
|
|
|
|
def predict_proba(self, data, ntree_limit=None, validate_features=True):
|
|
"""
|
|
Predict the probability of each `data` example being of a given class.
|
|
|
|
.. note:: This function is not thread safe
|
|
|
|
For each booster object, predict can only be called from one thread.
|
|
If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
|
|
of model object and then call predict
|
|
|
|
Parameters
|
|
----------
|
|
data : DMatrix
|
|
The dmatrix storing the input.
|
|
ntree_limit : int
|
|
Limit number of trees in the prediction; defaults to best_ntree_limit if defined
|
|
(i.e. it has been trained with early stopping), otherwise 0 (use all trees).
|
|
validate_features : bool
|
|
When this is True, validate that the Booster's and data's feature_names are identical.
|
|
Otherwise, it is assumed that the feature_names are the same.
|
|
|
|
Returns
|
|
-------
|
|
prediction : numpy array
|
|
a numpy array with the probability of each data example being of a given class.
|
|
"""
|
|
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
|
|
if ntree_limit is None:
|
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
|
class_probs = self.get_booster().predict(test_dmatrix,
|
|
ntree_limit=ntree_limit,
|
|
validate_features=validate_features)
|
|
if self.objective == "multi:softprob":
|
|
return class_probs
|
|
classone_probs = class_probs
|
|
classzero_probs = 1.0 - classone_probs
|
|
return np.vstack((classzero_probs, classone_probs)).transpose()
|
|
|
|
def evals_result(self):
|
|
"""Return the evaluation results.
|
|
|
|
If **eval_set** is passed to the `fit` function, you can call
|
|
``evals_result()`` to get evaluation results for all passed **eval_sets**.
|
|
When **eval_metric** is also passed to the `fit` function, the
|
|
**evals_result** will contain the **eval_metrics** passed to the `fit` function.
|
|
|
|
Returns
|
|
-------
|
|
evals_result : dictionary
|
|
|
|
Example
|
|
-------
|
|
|
|
.. code-block:: python
|
|
|
|
param_dist = {'objective':'binary:logistic', 'n_estimators':2}
|
|
|
|
clf = xgb.XGBClassifier(**param_dist)
|
|
|
|
clf.fit(X_train, y_train,
|
|
eval_set=[(X_train, y_train), (X_test, y_test)],
|
|
eval_metric='logloss',
|
|
verbose=True)
|
|
|
|
evals_result = clf.evals_result()
|
|
|
|
The variable **evals_result** will contain
|
|
|
|
.. code-block:: python
|
|
|
|
{'validation_0': {'logloss': ['0.604835', '0.531479']},
|
|
'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
|
"""
|
|
if self.evals_result_:
|
|
evals_result = self.evals_result_
|
|
else:
|
|
raise XGBoostError('No results.')
|
|
|
|
return evals_result
|
|
|
|
|
|
class XGBRFClassifier(XGBClassifier):
|
|
# pylint: disable=missing-docstring
|
|
__doc__ = "scikit-learn API for XGBoost random forest classification.\n\n"\
|
|
+ '\n'.join(XGBModel.__doc__.split('\n')[2:])
|
|
|
|
def __init__(self, max_depth=3, learning_rate=1, n_estimators=100,
|
|
verbosity=1, objective="binary:logistic", n_jobs=1,
|
|
gpu_id=-1, gamma=0, min_child_weight=1, max_delta_step=0,
|
|
subsample=0.8, colsample_bytree=1, colsample_bylevel=1,
|
|
colsample_bynode=0.8, reg_alpha=0, reg_lambda=1e-5,
|
|
scale_pos_weight=1, base_score=0.5, random_state=0,
|
|
missing=None, **kwargs):
|
|
super(XGBRFClassifier, self).__init__(
|
|
max_depth=max_depth, learning_rate=learning_rate,
|
|
n_estimators=n_estimators, verbosity=verbosity,
|
|
objective=objective, booster='gbtree', n_jobs=n_jobs,
|
|
gpu_id=gpu_id, gamma=gamma, min_child_weight=min_child_weight,
|
|
max_delta_step=max_delta_step,
|
|
subsample=subsample, colsample_bytree=colsample_bytree,
|
|
colsample_bylevel=colsample_bylevel,
|
|
colsample_bynode=colsample_bynode, reg_alpha=reg_alpha,
|
|
reg_lambda=reg_lambda, scale_pos_weight=scale_pos_weight,
|
|
base_score=base_score, random_state=random_state, missing=missing,
|
|
**kwargs)
|
|
|
|
def get_xgb_params(self):
|
|
params = super(XGBRFClassifier, self).get_xgb_params()
|
|
params['num_parallel_tree'] = self.n_estimators
|
|
return params
|
|
|
|
def get_num_boosting_rounds(self):
|
|
return 1
|
|
|
|
|
|
class XGBRegressor(XGBModel, XGBRegressorBase):
|
|
# pylint: disable=missing-docstring
|
|
__doc__ = "Implementation of the scikit-learn API for XGBoost regression.\n\n"\
|
|
+ '\n'.join(XGBModel.__doc__.split('\n')[2:])
|
|
|
|
|
|
class XGBRFRegressor(XGBRegressor):
|
|
# pylint: disable=missing-docstring
|
|
__doc__ = "scikit-learn API for XGBoost random forest regression.\n\n"\
|
|
+ '\n'.join(XGBModel.__doc__.split('\n')[2:])
|
|
|
|
def __init__(self, max_depth=3, learning_rate=1, n_estimators=100,
|
|
verbosity=1, objective="reg:squarederror", n_jobs=1,
|
|
gpu_id=-1, gamma=0, min_child_weight=1,
|
|
max_delta_step=0, subsample=0.8, colsample_bytree=1,
|
|
colsample_bylevel=1, colsample_bynode=0.8, reg_alpha=0,
|
|
reg_lambda=1e-5, scale_pos_weight=1, base_score=0.5,
|
|
random_state=0, missing=None, **kwargs):
|
|
super(XGBRFRegressor, self).__init__(
|
|
max_depth=max_depth, learning_rate=learning_rate,
|
|
n_estimators=n_estimators, verbosity=verbosity,
|
|
objective=objective, booster='gbtree', n_jobs=n_jobs,
|
|
gpu_id=gpu_id, gamma=gamma, min_child_weight=min_child_weight,
|
|
max_delta_step=max_delta_step, subsample=subsample,
|
|
colsample_bytree=colsample_bytree,
|
|
colsample_bylevel=colsample_bylevel,
|
|
colsample_bynode=colsample_bynode,
|
|
reg_alpha=reg_alpha, reg_lambda=reg_lambda,
|
|
scale_pos_weight=scale_pos_weight,
|
|
base_score=base_score, random_state=random_state, missing=missing,
|
|
**kwargs)
|
|
|
|
def get_xgb_params(self):
|
|
params = super(XGBRFRegressor, self).get_xgb_params()
|
|
params['num_parallel_tree'] = self.n_estimators
|
|
return params
|
|
|
|
def get_num_boosting_rounds(self):
|
|
return 1
|
|
|
|
|
|
class XGBRanker(XGBModel):
|
|
# pylint: disable=missing-docstring,too-many-arguments,invalid-name
|
|
"""Implementation of the Scikit-Learn API for XGBoost Ranking.
|
|
|
|
Parameters
|
|
----------
|
|
max_depth : int
|
|
Maximum tree depth for base learners.
|
|
learning_rate : float
|
|
Boosting learning rate (xgb's "eta")
|
|
n_estimators : int
|
|
Number of boosted trees to fit.
|
|
verbosity : int
|
|
The degree of verbosity. Valid values are 0 (silent) - 3 (debug).
|
|
objective : string
|
|
Specify the learning task and the corresponding learning objective.
|
|
The objective name must start with "rank:".
|
|
booster: string
|
|
Specify which booster to use: gbtree, gblinear or dart.
|
|
n_jobs : int
|
|
Number of parallel threads used to run xgboost.
|
|
gamma : float
|
|
Minimum loss reduction required to make a further partition on a leaf node of the tree.
|
|
min_child_weight : int
|
|
Minimum sum of instance weight(hessian) needed in a child.
|
|
max_delta_step : int
|
|
Maximum delta step we allow each tree's weight estimation to be.
|
|
subsample : float
|
|
Subsample ratio of the training instance.
|
|
colsample_bytree : float
|
|
Subsample ratio of columns when constructing each tree.
|
|
colsample_bylevel : float
|
|
Subsample ratio of columns for each level.
|
|
colsample_bynode : float
|
|
Subsample ratio of columns for each split.
|
|
reg_alpha : float (xgb's alpha)
|
|
L1 regularization term on weights
|
|
reg_lambda : float (xgb's lambda)
|
|
L2 regularization term on weights
|
|
scale_pos_weight : float
|
|
Balancing of positive and negative weights.
|
|
base_score:
|
|
The initial prediction score of all instances, global bias.
|
|
random_state : int
|
|
Random number seed.
|
|
|
|
.. note::
|
|
|
|
Using gblinear booster with shotgun updater is nondeterministic as
|
|
it uses Hogwild algorithm.
|
|
|
|
missing : float, optional
|
|
Value in the data which needs to be present as a missing value. If
|
|
None, defaults to np.nan.
|
|
\\*\\*kwargs : dict, optional
|
|
Keyword arguments for XGBoost Booster object. Full documentation of parameters can
|
|
be found here: https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst.
|
|
Attempting to set a parameter via the constructor args and \\*\\*kwargs dict
|
|
simultaneously will result in a TypeError.
|
|
|
|
.. note:: \\*\\*kwargs unsupported by scikit-learn
|
|
|
|
\\*\\*kwargs is unsupported by scikit-learn. We do not guarantee that parameters
|
|
passed via this argument will interact properly with scikit-learn.
|
|
|
|
Note
|
|
----
|
|
A custom objective function is currently not supported by XGBRanker.
|
|
Likewise, a custom metric function is not supported either.
|
|
|
|
Note
|
|
----
|
|
Query group information is required for ranking tasks.
|
|
|
|
Before fitting the model, your data need to be sorted by query group. When
|
|
fitting the model, you need to provide an additional array that
|
|
contains the size of each query group.
|
|
|
|
For example, if your original data look like:
|
|
|
|
+-------+-----------+---------------+
|
|
| qid | label | features |
|
|
+-------+-----------+---------------+
|
|
| 1 | 0 | x_1 |
|
|
+-------+-----------+---------------+
|
|
| 1 | 1 | x_2 |
|
|
+-------+-----------+---------------+
|
|
| 1 | 0 | x_3 |
|
|
+-------+-----------+---------------+
|
|
| 2 | 0 | x_4 |
|
|
+-------+-----------+---------------+
|
|
| 2 | 1 | x_5 |
|
|
+-------+-----------+---------------+
|
|
| 2 | 1 | x_6 |
|
|
+-------+-----------+---------------+
|
|
| 2 | 1 | x_7 |
|
|
+-------+-----------+---------------+
|
|
|
|
then your group array should be ``[3, 4]``.
|
|
|
|
"""
|
|
|
|
def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100,
|
|
verbosity=1, objective="rank:pairwise", booster='gbtree',
|
|
tree_method='auto', n_jobs=-1, gpu_id=-1, gamma=0,
|
|
min_child_weight=1, max_delta_step=0, subsample=1,
|
|
colsample_bytree=1, colsample_bylevel=1, colsample_bynode=1,
|
|
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5,
|
|
random_state=0, missing=None, **kwargs):
|
|
|
|
super(XGBRanker, self).__init__(
|
|
max_depth=max_depth, learning_rate=learning_rate,
|
|
n_estimators=n_estimators, verbosity=verbosity,
|
|
objective=objective, booster=booster, tree_method=tree_method,
|
|
n_jobs=n_jobs, gpu_id=gpu_id, gamma=gamma,
|
|
min_child_weight=min_child_weight, max_delta_step=max_delta_step,
|
|
subsample=subsample, colsample_bytree=colsample_bytree,
|
|
colsample_bylevel=colsample_bylevel,
|
|
colsample_bynode=colsample_bynode, reg_alpha=reg_alpha,
|
|
reg_lambda=reg_lambda, scale_pos_weight=scale_pos_weight,
|
|
base_score=base_score, random_state=random_state, missing=missing,
|
|
**kwargs)
|
|
if callable(self.objective):
|
|
raise ValueError(
|
|
"custom objective function not supported by XGBRanker")
|
|
if "rank:" not in self.objective:
|
|
raise ValueError("please use XGBRanker for ranking task")
|
|
|
|
def fit(self, X, y, group, sample_weight=None, eval_set=None,
|
|
sample_weight_eval_set=None, eval_group=None, eval_metric=None,
|
|
early_stopping_rounds=None, verbose=False, xgb_model=None,
|
|
callbacks=None):
|
|
# pylint: disable = attribute-defined-outside-init,arguments-differ
|
|
"""
|
|
Fit gradient boosting ranker
|
|
|
|
Parameters
|
|
----------
|
|
X : array_like
|
|
Feature matrix
|
|
y : array_like
|
|
Labels
|
|
group : array_like
|
|
Size of each query group of training data. Should have as many elements as
|
|
the query groups in the training data
|
|
sample_weight : array_like
|
|
Query group weights
|
|
|
|
.. note:: Weights are per-group for ranking tasks
|
|
|
|
In ranking task, one weight is assigned to each query group (not each
|
|
data point). This is because we only care about the relative ordering of
|
|
data points within each group, so it doesn't make sense to assign
|
|
weights to individual data points.
|
|
|
|
eval_set : list, optional
|
|
A list of (X, y) tuple pairs to use as validation sets, for which
|
|
metrics will be computed.
|
|
Validation metrics will help us track the performance of the model.
|
|
sample_weight_eval_set : list, optional
|
|
A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of
|
|
group weights on the i-th validation set.
|
|
|
|
.. note:: Weights are per-group for ranking tasks
|
|
|
|
In ranking task, one weight is assigned to each query group (not each
|
|
data point). This is because we only care about the relative ordering of
|
|
data points within each group, so it doesn't make sense to assign
|
|
weights to individual data points.
|
|
|
|
eval_group : list of arrays, optional
|
|
A list in which ``eval_group[i]`` is the list containing the sizes of all
|
|
query groups in the ``i``-th pair in **eval_set**.
|
|
eval_metric : str, list of str, optional
|
|
If a str, should be a built-in evaluation metric to use. See
|
|
doc/parameter.rst.
|
|
If a list of str, should be the list of multiple built-in evaluation metrics
|
|
to use. The custom evaluation metric is not yet supported for the ranker.
|
|
early_stopping_rounds : int
|
|
Activates early stopping. Validation metric needs to improve at least once in
|
|
every **early_stopping_rounds** round(s) to continue training.
|
|
Requires at least one item in **eval_set**.
|
|
The method returns the model from the last iteration (not the best one).
|
|
If there's more than one item in **eval_set**, the last entry will be used
|
|
for early stopping.
|
|
If there's more than one metric in **eval_metric**, the last metric will be
|
|
used for early stopping.
|
|
If early stopping occurs, the model will have three additional fields:
|
|
``clf.best_score``, ``clf.best_iteration`` and ``clf.best_ntree_limit``.
|
|
verbose : bool
|
|
If `verbose` and an evaluation set is used, writes the evaluation
|
|
metric measured on the validation set to stderr.
|
|
xgb_model : str
|
|
file name of stored XGBoost model or 'Booster' instance XGBoost model to be
|
|
loaded before training (allows training continuation).
|
|
callbacks : list of callback functions
|
|
List of callback functions that are applied at end of each iteration.
|
|
It is possible to use predefined callbacks by using :ref:`callback_api`.
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
[xgb.callback.reset_learning_rate(custom_rates)]
|
|
"""
|
|
# check if group information is provided
|
|
if group is None:
|
|
raise ValueError("group is required for ranking task")
|
|
|
|
if eval_set is not None:
|
|
if eval_group is None:
|
|
raise ValueError("eval_group is required if eval_set is not None")
|
|
if len(eval_group) != len(eval_set):
|
|
raise ValueError("length of eval_group should match that of eval_set")
|
|
if any(group is None for group in eval_group):
|
|
raise ValueError("group is required for all eval datasets for ranking task")
|
|
|
|
def _dmat_init(group, **params):
|
|
ret = DMatrix(**params)
|
|
ret.set_group(group)
|
|
return ret
|
|
|
|
if sample_weight is not None:
|
|
train_dmatrix = _dmat_init(
|
|
group, data=X, label=y, weight=sample_weight,
|
|
missing=self.missing, nthread=self.n_jobs)
|
|
else:
|
|
train_dmatrix = _dmat_init(
|
|
group, data=X, label=y,
|
|
missing=self.missing, nthread=self.n_jobs)
|
|
|
|
evals_result = {}
|
|
|
|
if eval_set is not None:
|
|
if sample_weight_eval_set is None:
|
|
sample_weight_eval_set = [None] * len(eval_set)
|
|
evals = [_dmat_init(eval_group[i], data=eval_set[i][0], label=eval_set[i][1],
|
|
missing=self.missing, weight=sample_weight_eval_set[i],
|
|
nthread=self.n_jobs) for i in range(len(eval_set))]
|
|
nevals = len(evals)
|
|
eval_names = ["eval_{}".format(i) for i in range(nevals)]
|
|
evals = list(zip(evals, eval_names))
|
|
else:
|
|
evals = ()
|
|
|
|
params = self.get_xgb_params()
|
|
|
|
feval = eval_metric if callable(eval_metric) else None
|
|
if eval_metric is not None:
|
|
if callable(eval_metric):
|
|
raise ValueError('Custom evaluation metric is not yet supported' +
|
|
'for XGBRanker.')
|
|
params.update({'eval_metric': eval_metric})
|
|
|
|
self._Booster = train(params, train_dmatrix,
|
|
self.n_estimators,
|
|
early_stopping_rounds=early_stopping_rounds, evals=evals,
|
|
evals_result=evals_result, feval=feval,
|
|
verbose_eval=verbose, xgb_model=xgb_model,
|
|
callbacks=callbacks)
|
|
|
|
self.objective = params["objective"]
|
|
|
|
if evals_result:
|
|
for val in evals_result.items():
|
|
evals_result_key = list(val[1].keys())[0]
|
|
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
|
|
self.evals_result = evals_result
|
|
|
|
if early_stopping_rounds is not None:
|
|
self.best_score = self._Booster.best_score
|
|
self.best_iteration = self._Booster.best_iteration
|
|
self.best_ntree_limit = self._Booster.best_ntree_limit
|
|
|
|
return self
|
|
|
|
def predict(self, data, output_margin=False, ntree_limit=0, validate_features=True):
|
|
|
|
test_dmatrix = DMatrix(data, missing=self.missing)
|
|
if ntree_limit is None:
|
|
ntree_limit = getattr(self, "best_ntree_limit", 0)
|
|
|
|
return self.get_booster().predict(test_dmatrix,
|
|
output_margin=output_margin,
|
|
ntree_limit=ntree_limit,
|
|
validate_features=validate_features)
|
|
|
|
predict.__doc__ = XGBModel.predict.__doc__
|