xgboost/tests/cpp/metric/test_rank_metric.h
Jiaming Yuan a5a58102e5
Revamp the rabit implementation. (#10112)
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
2024-05-20 11:56:23 +08:00

187 lines
8.0 KiB
C++

/**
* Copyright 2016-2023 by XGBoost Contributors
*/
#pragma once
#include <gtest/gtest.h> // for Test, EXPECT_NEAR, ASSERT_STREQ
#include <xgboost/context.h> // for Context
#include <xgboost/data.h> // for MetaInfo, DMatrix
#include <xgboost/linalg.h> // for Matrix
#include <xgboost/metric.h> // for Metric
#include <algorithm> // for max
#include <memory> // for unique_ptr
#include <vector> // for vector
#include "../helpers.h" // for GetMetricEval, CreateEmptyGe...
#include "xgboost/base.h" // for bst_float, kRtEps
#include "xgboost/host_device_vector.h" // for HostDeviceVector
#include "xgboost/json.h" // for Json, String, Object
namespace xgboost::metric {
inline void VerifyPrecision(DataSplitMode data_split_mode, DeviceOrd device) {
auto ctx = MakeCUDACtx(device.ordinal);
std::unique_ptr<xgboost::Metric> metric{Metric::Create("pre", &ctx)};
ASSERT_STREQ(metric->Name(), "pre");
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1}, {0, 1}, {}, {}, data_split_mode), 0.5, 1e-7);
EXPECT_NEAR(
GetMetricEval(metric.get(), {0.1f, 0.9f, 0.1f, 0.9f}, {0, 0, 1, 1}, {}, {}, data_split_mode),
0.5, 1e-7);
metric.reset(xgboost::Metric::Create("pre@2", &ctx));
ASSERT_STREQ(metric->Name(), "pre@2");
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-7);
EXPECT_NEAR(
GetMetricEval(metric.get(), {0.1f, 0.9f, 0.1f, 0.9f}, {0, 0, 1, 1}, {}, {}, data_split_mode),
0.5f, 0.001f);
EXPECT_ANY_THROW(GetMetricEval(metric.get(), {0, 1}, {}, {}, {}, data_split_mode));
metric.reset(xgboost::Metric::Create("pre@4", &ctx));
EXPECT_NEAR(GetMetricEval(metric.get(), {0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f},
{0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f}, {}, {}, data_split_mode),
0.5f, 1e-7);
}
inline void VerifyNDCG(DataSplitMode data_split_mode, DeviceOrd device) {
auto ctx = MakeCUDACtx(device.ordinal);
Metric * metric = xgboost::Metric::Create("ndcg", &ctx);
ASSERT_STREQ(metric->Name(), "ndcg");
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 1}, {}, {}, {}, data_split_mode));
ASSERT_NEAR(GetMetricEval(metric,
xgboost::HostDeviceVector<xgboost::bst_float>{},
{}, {}, {}, data_split_mode), 1, 1e-10);
ASSERT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.6509f, 0.001f);
delete metric;
metric = xgboost::Metric::Create("ndcg@2", &ctx);
ASSERT_STREQ(metric->Name(), "ndcg@2");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.3868f, 0.001f);
delete metric;
metric = xgboost::Metric::Create("ndcg@-", &ctx);
ASSERT_STREQ(metric->Name(), "ndcg-");
EXPECT_NEAR(GetMetricEval(metric,
xgboost::HostDeviceVector<xgboost::bst_float>{},
{}, {}, {}, data_split_mode), 0, 1e-10);
ASSERT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1.f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.6509f, 0.001f);
delete metric;
metric = xgboost::Metric::Create("ndcg-", &ctx);
ASSERT_STREQ(metric->Name(), "ndcg-");
EXPECT_NEAR(GetMetricEval(metric,
xgboost::HostDeviceVector<xgboost::bst_float>{},
{}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1.f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.6509f, 0.001f);
delete metric;
metric = xgboost::Metric::Create("ndcg@2-", &ctx);
ASSERT_STREQ(metric->Name(), "ndcg@2-");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1.f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
1.f - 0.3868f, 1.f - 0.001f);
delete metric;
}
inline void VerifyMAP(DataSplitMode data_split_mode, DeviceOrd device) {
auto ctx = MakeCUDACtx(device.ordinal);
Metric * metric = xgboost::Metric::Create("map", &ctx);
ASSERT_STREQ(metric->Name(), "map");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1, kRtEps);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.5f, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
xgboost::HostDeviceVector<xgboost::bst_float>{},
std::vector<xgboost::bst_float>{}, {}, {}, data_split_mode), 1, 1e-10);
// Rank metric with group info
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.2f, 0.8f, 0.4f, 1.7f},
{1, 1, 1, 0, 1, 0}, // Labels
{}, // Weights
{0, 2, 5, 6}, // Group info
data_split_mode),
0.8611f, 0.001f);
delete metric;
metric = xgboost::Metric::Create("map@-", &ctx);
ASSERT_STREQ(metric->Name(), "map-");
EXPECT_NEAR(GetMetricEval(metric,
xgboost::HostDeviceVector<xgboost::bst_float>{},
{}, {}, {}, data_split_mode), 0, 1e-10);
delete metric;
metric = xgboost::Metric::Create("map-", &ctx);
ASSERT_STREQ(metric->Name(), "map-");
EXPECT_NEAR(GetMetricEval(metric,
xgboost::HostDeviceVector<xgboost::bst_float>{},
{}, {}, {}, data_split_mode), 0, 1e-10);
delete metric;
metric = xgboost::Metric::Create("map@2", &ctx);
ASSERT_STREQ(metric->Name(), "map@2");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.25f, 0.001f);
delete metric;
}
inline void VerifyNDCGExpGain(DataSplitMode data_split_mode, DeviceOrd device) {
Context ctx = MakeCUDACtx(device.ordinal);
auto p_fmat = xgboost::RandomDataGenerator{0, 0, 0}.GenerateDMatrix();
MetaInfo& info = p_fmat->Info();
info.labels = linalg::Matrix<float>{{10.0f, 0.0f, 0.0f, 1.0f, 5.0f}, {5}, ctx.Device()};
info.num_row_ = info.labels.Shape(0);
info.group_ptr_.resize(2);
info.group_ptr_[0] = 0;
info.group_ptr_[1] = info.num_row_;
info.data_split_mode = data_split_mode;
HostDeviceVector<float> predt{{0.1f, 0.2f, 0.3f, 4.0f, 70.0f}};
std::unique_ptr<Metric> metric{Metric::Create("ndcg", &ctx)};
Json config{Object{}};
config["name"] = String{"ndcg"};
config["lambdarank_param"] = Object{};
config["lambdarank_param"]["ndcg_exp_gain"] = String{"true"};
config["lambdarank_param"]["lambdarank_num_pair_per_sample"] = String{"32"};
metric->LoadConfig(config);
auto ndcg = metric->Evaluate(predt, p_fmat);
ASSERT_NEAR(ndcg, 0.409738f, kRtEps);
config["lambdarank_param"]["ndcg_exp_gain"] = String{"false"};
metric->LoadConfig(config);
ndcg = metric->Evaluate(predt, p_fmat);
ASSERT_NEAR(ndcg, 0.695694f, kRtEps);
predt.HostVector() = info.labels.Data()->HostVector();
ndcg = metric->Evaluate(predt, p_fmat);
ASSERT_NEAR(ndcg, 1.0, kRtEps);
}
} // namespace xgboost::metric