xgboost/tests/cpp/tree/test_quantile_hist.cc

257 lines
9.7 KiB
C++

/**
* Copyright 2018-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/tree_updater.h>
#include <algorithm>
#include <cstddef> // for size_t
#include <string>
#include <vector>
#include "../../../src/tree/common_row_partitioner.h"
#include "../../../src/tree/hist/expand_entry.h" // for MultiExpandEntry, CPUExpandEntry
#include "../../../src/tree/param.h"
#include "../helpers.h"
#include "test_partitioner.h"
#include "xgboost/data.h"
namespace xgboost::tree {
namespace {
template <typename ExpandEntry>
void TestPartitioner(bst_target_t n_targets) {
std::size_t n_samples = 1024, base_rowid = 0;
bst_feature_t n_features = 1;
Context ctx;
ctx.InitAllowUnknown(Args{});
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
ASSERT_EQ(partitioner.base_rowid, base_rowid);
ASSERT_EQ(partitioner.Size(), 1);
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
std::vector<ExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
auto cuts = common::SketchOnDMatrix(&ctx, Xy.get(), 64);
for (auto const& page : Xy->GetBatches<SparsePage>()) {
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
bst_feature_t const split_ind = 0;
common::ColumnMatrix column_indices;
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
{
auto min_value = gmat.cut.MinValues()[split_ind];
RegTree tree{n_targets, n_features};
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
if constexpr (std::is_same_v<ExpandEntry, CPUExpandEntry>) {
GetSplit(&tree, min_value, &candidates);
} else {
GetMultiSplitForTest(&tree, min_value, &candidates);
}
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
auto ptr = gmat.cut.Ptrs()[split_ind + 1];
float split_value = gmat.cut.Values().at(ptr / 2);
RegTree tree{n_targets, n_features};
if constexpr (std::is_same<ExpandEntry, CPUExpandEntry>::value) {
GetSplit(&tree, split_value, &candidates);
} else {
GetMultiSplitForTest(&tree, split_value, &candidates);
}
auto left_nidx = tree.LeftChild(RegTree::kRoot);
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = gmat.cut.Values().at(gmat.index[*it]);
ASSERT_LE(value, split_value);
}
auto right_nidx = tree.RightChild(RegTree::kRoot);
elem = partitioner[right_nidx];
for (auto it = elem.begin; it != elem.end; ++it) {
auto value = gmat.cut.Values().at(gmat.index[*it]);
ASSERT_GT(value, split_value);
}
}
}
}
} // anonymous namespace
TEST(QuantileHist, Partitioner) { TestPartitioner<CPUExpandEntry>(1); }
TEST(QuantileHist, MultiPartitioner) { TestPartitioner<MultiExpandEntry>(3); }
namespace {
template <typename ExpandEntry>
void VerifyColumnSplitPartitioner(bst_target_t n_targets, size_t n_samples,
bst_feature_t n_features, size_t base_rowid,
std::shared_ptr<DMatrix> Xy, float min_value, float mid_value,
CommonRowPartitioner const& expected_mid_partitioner) {
auto dmat =
std::unique_ptr<DMatrix>{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
Context ctx;
ctx.InitAllowUnknown(Args{});
std::vector<ExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
auto cuts = common::SketchOnDMatrix(&ctx, dmat.get(), 64);
for (auto const& page : Xy->GetBatches<SparsePage>()) {
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
common::ColumnMatrix column_indices;
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
{
RegTree tree{n_targets, n_features};
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
if constexpr (std::is_same<ExpandEntry, CPUExpandEntry>::value) {
GetSplit(&tree, min_value, &candidates);
} else {
GetMultiSplitForTest(&tree, min_value, &candidates);
}
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
ASSERT_EQ(partitioner.Size(), 3);
ASSERT_EQ(partitioner[1].Size(), 0);
ASSERT_EQ(partitioner[2].Size(), n_samples);
}
{
RegTree tree{n_targets, n_features};
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
if constexpr (std::is_same<ExpandEntry, CPUExpandEntry>::value) {
GetSplit(&tree, mid_value, &candidates);
} else {
GetMultiSplitForTest(&tree, mid_value, &candidates);
}
auto left_nidx = tree.LeftChild(RegTree::kRoot);
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
auto elem = partitioner[left_nidx];
ASSERT_LT(elem.Size(), n_samples);
ASSERT_GT(elem.Size(), 1);
auto expected_elem = expected_mid_partitioner[left_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin, eit = expected_elem.begin; it != elem.end; ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
auto right_nidx = tree.RightChild(RegTree::kRoot);
elem = partitioner[right_nidx];
expected_elem = expected_mid_partitioner[right_nidx];
ASSERT_EQ(elem.Size(), expected_elem.Size());
for (auto it = elem.begin, eit = expected_elem.begin; it != elem.end; ++it, ++eit) {
ASSERT_EQ(*it, *eit);
}
}
}
}
template <typename ExpandEntry>
void TestColumnSplitPartitioner(bst_target_t n_targets) {
std::size_t n_samples = 1024, base_rowid = 0;
bst_feature_t n_features = 16;
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
std::vector<ExpandEntry> candidates{{0, 0}};
candidates.front().split.loss_chg = 0.4;
Context ctx;
ctx.InitAllowUnknown(Args{});
auto cuts = common::SketchOnDMatrix(&ctx, Xy.get(), 64);
float min_value, mid_value;
CommonRowPartitioner mid_partitioner{&ctx, n_samples, base_rowid, false};
for (auto const& page : Xy->GetBatches<SparsePage>()) {
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
bst_feature_t const split_ind = 0;
common::ColumnMatrix column_indices;
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
min_value = gmat.cut.MinValues()[split_ind];
auto ptr = gmat.cut.Ptrs()[split_ind + 1];
mid_value = gmat.cut.Values().at(ptr / 2);
RegTree tree{n_targets, n_features};
if constexpr (std::is_same<ExpandEntry, CPUExpandEntry>::value) {
GetSplit(&tree, mid_value, &candidates);
} else {
GetMultiSplitForTest(&tree, mid_value, &candidates);
}
mid_partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
}
auto constexpr kWorkers = 4;
RunWithInMemoryCommunicator(kWorkers, VerifyColumnSplitPartitioner<ExpandEntry>, n_targets,
n_samples, n_features, base_rowid, Xy, min_value, mid_value,
mid_partitioner);
}
} // anonymous namespace
TEST(QuantileHist, PartitionerColSplit) { TestColumnSplitPartitioner<CPUExpandEntry>(1); }
TEST(QuantileHist, MultiPartitionerColSplit) { TestColumnSplitPartitioner<MultiExpandEntry>(3); }
namespace {
void VerifyColumnSplit(Context const* ctx, bst_row_t rows, bst_feature_t cols, bst_target_t n_targets,
RegTree const& expected_tree) {
auto Xy = RandomDataGenerator{rows, cols, 0}.GenerateDMatrix(true);
linalg::Matrix<GradientPair> gpair = GenerateRandomGradients(ctx, rows, n_targets);
ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_quantile_histmaker", ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
std::unique_ptr<DMatrix> sliced{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
RegTree tree{n_targets, cols};
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, sliced.get(), position, {&tree});
Json json{Object{}};
tree.SaveModel(&json);
Json expected_json{Object{}};
expected_tree.SaveModel(&expected_json);
ASSERT_EQ(json, expected_json);
}
void TestColumnSplit(bst_target_t n_targets) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;
RegTree expected_tree{n_targets, kCols};
ObjInfo task{ObjInfo::kRegression};
Context ctx;
{
auto Xy = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true);
auto gpair = GenerateRandomGradients(&ctx, kRows, n_targets);
std::unique_ptr<TreeUpdater> updater{
TreeUpdater::Create("grow_quantile_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Configure(Args{});
updater->Update(&param, &gpair, Xy.get(), position, {&expected_tree});
}
auto constexpr kWorldSize = 2;
RunWithInMemoryCommunicator(kWorldSize, VerifyColumnSplit, &ctx, kRows, kCols, n_targets,
std::cref(expected_tree));
}
} // anonymous namespace
TEST(QuantileHist, ColumnSplit) { TestColumnSplit(1); }
TEST(QuantileHist, ColumnSplitMultiTarget) { TestColumnSplit(3); }
} // namespace xgboost::tree