738 lines
23 KiB
C++
738 lines
23 KiB
C++
/**
|
|
* Copyright 2015-2024, XGBoost Contributors
|
|
* \file data.h
|
|
* \brief The input data structure of xgboost.
|
|
* \author Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_DATA_H_
|
|
#define XGBOOST_DATA_H_
|
|
|
|
#include <dmlc/base.h>
|
|
#include <dmlc/data.h>
|
|
#include <dmlc/serializer.h>
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/host_device_vector.h>
|
|
#include <xgboost/linalg.h>
|
|
#include <xgboost/span.h>
|
|
#include <xgboost/string_view.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace xgboost {
|
|
// forward declare dmatrix.
|
|
class DMatrix;
|
|
struct Context;
|
|
|
|
/*! \brief data type accepted by xgboost interface */
|
|
enum class DataType : uint8_t {
|
|
kFloat32 = 1,
|
|
kDouble = 2,
|
|
kUInt32 = 3,
|
|
kUInt64 = 4,
|
|
kStr = 5
|
|
};
|
|
|
|
enum class FeatureType : uint8_t { kNumerical = 0, kCategorical = 1 };
|
|
|
|
enum class DataSplitMode : int { kRow = 0, kCol = 1 };
|
|
|
|
/*!
|
|
* \brief Meta information about dataset, always sit in memory.
|
|
*/
|
|
class MetaInfo {
|
|
public:
|
|
/*! \brief number of data fields in MetaInfo */
|
|
static constexpr uint64_t kNumField = 12;
|
|
|
|
/*! \brief number of rows in the data */
|
|
uint64_t num_row_{0}; // NOLINT
|
|
/*! \brief number of columns in the data */
|
|
uint64_t num_col_{0}; // NOLINT
|
|
/*! \brief number of nonzero entries in the data */
|
|
uint64_t num_nonzero_{0}; // NOLINT
|
|
/*! \brief label of each instance */
|
|
linalg::Tensor<float, 2> labels;
|
|
/*! \brief data split mode */
|
|
DataSplitMode data_split_mode{DataSplitMode::kRow};
|
|
/*!
|
|
* \brief the index of begin and end of a group
|
|
* needed when the learning task is ranking.
|
|
*/
|
|
std::vector<bst_group_t> group_ptr_; // NOLINT
|
|
/*! \brief weights of each instance, optional */
|
|
HostDeviceVector<bst_float> weights_; // NOLINT
|
|
/*!
|
|
* \brief initialized margins,
|
|
* if specified, xgboost will start from this init margin
|
|
* can be used to specify initial prediction to boost from.
|
|
*/
|
|
linalg::Tensor<float, 2> base_margin_; // NOLINT
|
|
/*!
|
|
* \brief lower bound of the label, to be used for survival analysis (censored regression)
|
|
*/
|
|
HostDeviceVector<bst_float> labels_lower_bound_; // NOLINT
|
|
/*!
|
|
* \brief upper bound of the label, to be used for survival analysis (censored regression)
|
|
*/
|
|
HostDeviceVector<bst_float> labels_upper_bound_; // NOLINT
|
|
|
|
/*!
|
|
* \brief Name of type for each feature provided by users. Eg. "int"/"float"/"i"/"q"
|
|
*/
|
|
std::vector<std::string> feature_type_names;
|
|
/*!
|
|
* \brief Name for each feature.
|
|
*/
|
|
std::vector<std::string> feature_names;
|
|
/*
|
|
* \brief Type of each feature. Automatically set when feature_type_names is specifed.
|
|
*/
|
|
HostDeviceVector<FeatureType> feature_types;
|
|
/*
|
|
* \brief Weight of each feature, used to define the probability of each feature being
|
|
* selected when using column sampling.
|
|
*/
|
|
HostDeviceVector<float> feature_weights;
|
|
|
|
/*! \brief default constructor */
|
|
MetaInfo() = default;
|
|
MetaInfo(MetaInfo&& that) = default;
|
|
MetaInfo& operator=(MetaInfo&& that) = default;
|
|
MetaInfo& operator=(MetaInfo const& that) = delete;
|
|
|
|
/**
|
|
* @brief Validate all metainfo.
|
|
*/
|
|
void Validate(DeviceOrd device) const;
|
|
|
|
MetaInfo Slice(common::Span<int32_t const> ridxs) const;
|
|
|
|
MetaInfo Copy() const;
|
|
|
|
/*!
|
|
* \brief Get weight of each instances.
|
|
* \param i Instance index.
|
|
* \return The weight.
|
|
*/
|
|
inline bst_float GetWeight(size_t i) const {
|
|
return weights_.Size() != 0 ? weights_.HostVector()[i] : 1.0f;
|
|
}
|
|
/*! \brief get sorted indexes (argsort) of labels by absolute value (used by cox loss) */
|
|
const std::vector<size_t>& LabelAbsSort(Context const* ctx) const;
|
|
/*! \brief clear all the information */
|
|
void Clear();
|
|
/*!
|
|
* \brief Load the Meta info from binary stream.
|
|
* \param fi The input stream
|
|
*/
|
|
void LoadBinary(dmlc::Stream* fi);
|
|
/*!
|
|
* \brief Save the Meta info to binary stream
|
|
* \param fo The output stream.
|
|
*/
|
|
void SaveBinary(dmlc::Stream* fo) const;
|
|
/*!
|
|
* \brief Set information in the meta info.
|
|
* \param key The key of the information.
|
|
* \param dptr The data pointer of the source array.
|
|
* \param dtype The type of the source data.
|
|
* \param num Number of elements in the source array.
|
|
*/
|
|
void SetInfo(Context const& ctx, const char* key, const void* dptr, DataType dtype, size_t num);
|
|
/*!
|
|
* \brief Set information in the meta info with array interface.
|
|
* \param key The key of the information.
|
|
* \param interface_str String representation of json format array interface.
|
|
*/
|
|
void SetInfo(Context const& ctx, StringView key, StringView interface_str);
|
|
|
|
void GetInfo(char const* key, bst_ulong* out_len, DataType dtype,
|
|
const void** out_dptr) const;
|
|
|
|
void SetFeatureInfo(const char *key, const char **info, const bst_ulong size);
|
|
void GetFeatureInfo(const char *field, std::vector<std::string>* out_str_vecs) const;
|
|
|
|
/**
|
|
* @brief Extend with other MetaInfo.
|
|
*
|
|
* @param that The other MetaInfo object.
|
|
*
|
|
* @param accumulate_rows Whether rows need to be accumulated in this function. If
|
|
* client code knows number of rows in advance, set this
|
|
* parameter to false.
|
|
* @param check_column Whether the extend method should check the consistency of
|
|
* columns.
|
|
*/
|
|
void Extend(MetaInfo const& that, bool accumulate_rows, bool check_column);
|
|
|
|
/**
|
|
* @brief Synchronize the number of columns across all workers.
|
|
*
|
|
* Normally we just need to find the maximum number of columns across all workers, but
|
|
* in vertical federated learning, since each worker loads its own list of columns,
|
|
* we need to sum them.
|
|
*/
|
|
void SynchronizeNumberOfColumns(Context const* ctx);
|
|
|
|
/*! \brief Whether the data is split row-wise. */
|
|
bool IsRowSplit() const {
|
|
return data_split_mode == DataSplitMode::kRow;
|
|
}
|
|
|
|
/** @brief Whether the data is split column-wise. */
|
|
bool IsColumnSplit() const { return data_split_mode == DataSplitMode::kCol; }
|
|
/** @brief Whether this is a learning to rank data. */
|
|
bool IsRanking() const { return !group_ptr_.empty(); }
|
|
|
|
/*!
|
|
* \brief A convenient method to check if we are doing vertical federated learning, which requires
|
|
* some special processing.
|
|
*/
|
|
bool IsVerticalFederated() const;
|
|
|
|
/*!
|
|
* \brief A convenient method to check if the MetaInfo should contain labels.
|
|
*
|
|
* Normally we assume labels are available everywhere. The only exception is in vertical federated
|
|
* learning where labels are only available on worker 0.
|
|
*/
|
|
bool ShouldHaveLabels() const;
|
|
/**
|
|
* @brief Flag for whether the DMatrix has categorical features.
|
|
*/
|
|
bool HasCategorical() const { return has_categorical_; }
|
|
|
|
private:
|
|
void SetInfoFromHost(Context const& ctx, StringView key, Json arr);
|
|
void SetInfoFromCUDA(Context const& ctx, StringView key, Json arr);
|
|
|
|
/*! \brief argsort of labels */
|
|
mutable std::vector<size_t> label_order_cache_;
|
|
bool has_categorical_{false};
|
|
};
|
|
|
|
/*! \brief Element from a sparse vector */
|
|
struct Entry {
|
|
/*! \brief feature index */
|
|
bst_feature_t index;
|
|
/*! \brief feature value */
|
|
bst_float fvalue;
|
|
/*! \brief default constructor */
|
|
Entry() = default;
|
|
/*!
|
|
* \brief constructor with index and value
|
|
* \param index The feature or row index.
|
|
* \param fvalue The feature value.
|
|
*/
|
|
XGBOOST_DEVICE Entry(bst_feature_t index, bst_float fvalue) : index(index), fvalue(fvalue) {}
|
|
/*! \brief reversely compare feature values */
|
|
inline static bool CmpValue(const Entry& a, const Entry& b) {
|
|
return a.fvalue < b.fvalue;
|
|
}
|
|
static bool CmpIndex(Entry const& a, Entry const& b) {
|
|
return a.index < b.index;
|
|
}
|
|
inline bool operator==(const Entry& other) const {
|
|
return (this->index == other.index && this->fvalue == other.fvalue);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* \brief Parameters for constructing histogram index batches.
|
|
*/
|
|
struct BatchParam {
|
|
/**
|
|
* \brief Maximum number of bins per feature for histograms.
|
|
*/
|
|
bst_bin_t max_bin{0};
|
|
/**
|
|
* \brief Hessian, used for sketching with future approx implementation.
|
|
*/
|
|
common::Span<float const> hess;
|
|
/**
|
|
* \brief Whether should we force DMatrix to regenerate the batch. Only used for
|
|
* GHistIndex.
|
|
*/
|
|
bool regen{false};
|
|
/**
|
|
* \brief Forbid regenerating the gradient index. Used for internal validation.
|
|
*/
|
|
bool forbid_regen{false};
|
|
/**
|
|
* \brief Parameter used to generate column matrix for hist.
|
|
*/
|
|
double sparse_thresh{std::numeric_limits<double>::quiet_NaN()};
|
|
|
|
/**
|
|
* \brief Exact or others that don't need histogram.
|
|
*/
|
|
BatchParam() = default;
|
|
/**
|
|
* \brief Used by the hist tree method.
|
|
*/
|
|
BatchParam(bst_bin_t max_bin, double sparse_thresh)
|
|
: max_bin{max_bin}, sparse_thresh{sparse_thresh} {}
|
|
/**
|
|
* \brief Used by the approx tree method.
|
|
*
|
|
* Get batch with sketch weighted by hessian. The batch will be regenerated if the
|
|
* span is changed, so caller should keep the span for each iteration.
|
|
*/
|
|
BatchParam(bst_bin_t max_bin, common::Span<float const> hessian, bool regenerate)
|
|
: max_bin{max_bin}, hess{hessian}, regen{regenerate} {}
|
|
|
|
[[nodiscard]] bool ParamNotEqual(BatchParam const& other) const {
|
|
// Check non-floating parameters.
|
|
bool cond = max_bin != other.max_bin;
|
|
// Check sparse thresh.
|
|
bool l_nan = std::isnan(sparse_thresh);
|
|
bool r_nan = std::isnan(other.sparse_thresh);
|
|
bool st_chg = (l_nan != r_nan) || (!l_nan && !r_nan && (sparse_thresh != other.sparse_thresh));
|
|
cond |= st_chg;
|
|
|
|
return cond;
|
|
}
|
|
[[nodiscard]] bool Initialized() const { return max_bin != 0; }
|
|
/**
|
|
* \brief Make a copy of self for DMatrix to describe how its existing index was generated.
|
|
*/
|
|
[[nodiscard]] BatchParam MakeCache() const {
|
|
auto p = *this;
|
|
// These parameters have nothing to do with how the gradient index was generated in the
|
|
// first place.
|
|
p.regen = false;
|
|
p.forbid_regen = false;
|
|
return p;
|
|
}
|
|
};
|
|
|
|
struct HostSparsePageView {
|
|
using Inst = common::Span<Entry const>;
|
|
|
|
common::Span<bst_row_t const> offset;
|
|
common::Span<Entry const> data;
|
|
|
|
Inst operator[](size_t i) const {
|
|
auto size = *(offset.data() + i + 1) - *(offset.data() + i);
|
|
return {data.data() + *(offset.data() + i),
|
|
static_cast<Inst::index_type>(size)};
|
|
}
|
|
|
|
[[nodiscard]] size_t Size() const { return offset.size() == 0 ? 0 : offset.size() - 1; }
|
|
};
|
|
|
|
/*!
|
|
* \brief In-memory storage unit of sparse batch, stored in CSR format.
|
|
*/
|
|
class SparsePage {
|
|
public:
|
|
// Offset for each row.
|
|
HostDeviceVector<bst_row_t> offset;
|
|
/*! \brief the data of the segments */
|
|
HostDeviceVector<Entry> data;
|
|
|
|
size_t base_rowid {0};
|
|
|
|
/*! \brief an instance of sparse vector in the batch */
|
|
using Inst = common::Span<Entry const>;
|
|
|
|
[[nodiscard]] HostSparsePageView GetView() const {
|
|
return {offset.ConstHostSpan(), data.ConstHostSpan()};
|
|
}
|
|
|
|
/*! \brief constructor */
|
|
SparsePage() {
|
|
this->Clear();
|
|
}
|
|
|
|
SparsePage(SparsePage const& that) = delete;
|
|
SparsePage(SparsePage&& that) = default;
|
|
SparsePage& operator=(SparsePage const& that) = delete;
|
|
SparsePage& operator=(SparsePage&& that) = default;
|
|
virtual ~SparsePage() = default;
|
|
|
|
/*! \return Number of instances in the page. */
|
|
[[nodiscard]] size_t Size() const {
|
|
return offset.Size() == 0 ? 0 : offset.Size() - 1;
|
|
}
|
|
|
|
/*! \return estimation of memory cost of this page */
|
|
[[nodiscard]] size_t MemCostBytes() const {
|
|
return offset.Size() * sizeof(size_t) + data.Size() * sizeof(Entry);
|
|
}
|
|
|
|
/*! \brief clear the page */
|
|
inline void Clear() {
|
|
base_rowid = 0;
|
|
auto& offset_vec = offset.HostVector();
|
|
offset_vec.clear();
|
|
offset_vec.push_back(0);
|
|
data.HostVector().clear();
|
|
}
|
|
|
|
/*! \brief Set the base row id for this page. */
|
|
inline void SetBaseRowId(size_t row_id) {
|
|
base_rowid = row_id;
|
|
}
|
|
|
|
[[nodiscard]] SparsePage GetTranspose(int num_columns, int32_t n_threads) const;
|
|
|
|
/**
|
|
* \brief Sort the column index.
|
|
*/
|
|
void SortIndices(int32_t n_threads);
|
|
/**
|
|
* \brief Check wether the column index is sorted.
|
|
*/
|
|
[[nodiscard]] bool IsIndicesSorted(int32_t n_threads) const;
|
|
/**
|
|
* \brief Reindex the column index with an offset.
|
|
*/
|
|
void Reindex(uint64_t feature_offset, int32_t n_threads);
|
|
|
|
void SortRows(int32_t n_threads);
|
|
|
|
/**
|
|
* \brief Pushes external data batch onto this page
|
|
*
|
|
* \tparam AdapterBatchT
|
|
* \param batch
|
|
* \param missing
|
|
* \param nthread
|
|
*
|
|
* \return The maximum number of columns encountered in this input batch. Useful when pushing many adapter batches to work out the total number of columns.
|
|
*/
|
|
template <typename AdapterBatchT>
|
|
uint64_t Push(const AdapterBatchT& batch, float missing, int nthread);
|
|
|
|
/*!
|
|
* \brief Push a sparse page
|
|
* \param batch the row page
|
|
*/
|
|
void Push(const SparsePage &batch);
|
|
/*!
|
|
* \brief Push a SparsePage stored in CSC format
|
|
* \param batch The row batch to be pushed
|
|
*/
|
|
void PushCSC(const SparsePage& batch);
|
|
};
|
|
|
|
class CSCPage: public SparsePage {
|
|
public:
|
|
CSCPage() : SparsePage() {}
|
|
explicit CSCPage(SparsePage page) : SparsePage(std::move(page)) {}
|
|
};
|
|
|
|
/**
|
|
* \brief Sparse page for exporting DMatrix. Same as SparsePage, just a different type to
|
|
* prevent being used internally.
|
|
*/
|
|
class ExtSparsePage {
|
|
public:
|
|
std::shared_ptr<SparsePage const> page;
|
|
explicit ExtSparsePage(std::shared_ptr<SparsePage const> p) : page{std::move(p)} {}
|
|
};
|
|
|
|
class SortedCSCPage : public SparsePage {
|
|
public:
|
|
SortedCSCPage() : SparsePage() {}
|
|
explicit SortedCSCPage(SparsePage page) : SparsePage(std::move(page)) {}
|
|
};
|
|
|
|
class EllpackPage;
|
|
class GHistIndexMatrix;
|
|
|
|
template<typename T>
|
|
class BatchIteratorImpl {
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag; // NOLINT
|
|
virtual ~BatchIteratorImpl() = default;
|
|
virtual const T& operator*() const = 0;
|
|
virtual BatchIteratorImpl& operator++() = 0;
|
|
[[nodiscard]] virtual bool AtEnd() const = 0;
|
|
virtual std::shared_ptr<T const> Page() const = 0;
|
|
};
|
|
|
|
template<typename T>
|
|
class BatchIterator {
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag; // NOLINT
|
|
explicit BatchIterator(BatchIteratorImpl<T>* impl) { impl_.reset(impl); }
|
|
explicit BatchIterator(std::shared_ptr<BatchIteratorImpl<T>> impl) { impl_ = impl; }
|
|
|
|
BatchIterator &operator++() {
|
|
CHECK(impl_ != nullptr);
|
|
++(*impl_);
|
|
return *this;
|
|
}
|
|
|
|
const T& operator*() const {
|
|
CHECK(impl_ != nullptr);
|
|
return *(*impl_);
|
|
}
|
|
|
|
bool operator!=(const BatchIterator&) const {
|
|
CHECK(impl_ != nullptr);
|
|
return !impl_->AtEnd();
|
|
}
|
|
|
|
[[nodiscard]] bool AtEnd() const {
|
|
CHECK(impl_ != nullptr);
|
|
return impl_->AtEnd();
|
|
}
|
|
|
|
[[nodiscard]] std::shared_ptr<T const> Page() const {
|
|
return impl_->Page();
|
|
}
|
|
|
|
private:
|
|
std::shared_ptr<BatchIteratorImpl<T>> impl_;
|
|
};
|
|
|
|
template<typename T>
|
|
class BatchSet {
|
|
public:
|
|
explicit BatchSet(BatchIterator<T> begin_iter) : begin_iter_(std::move(begin_iter)) {}
|
|
BatchIterator<T> begin() { return begin_iter_; } // NOLINT
|
|
BatchIterator<T> end() { return BatchIterator<T>(nullptr); } // NOLINT
|
|
|
|
private:
|
|
BatchIterator<T> begin_iter_;
|
|
};
|
|
|
|
struct XGBAPIThreadLocalEntry;
|
|
|
|
/*!
|
|
* \brief Internal data structured used by XGBoost during training.
|
|
*/
|
|
class DMatrix {
|
|
public:
|
|
/*! \brief default constructor */
|
|
DMatrix() = default;
|
|
/*! \brief meta information of the dataset */
|
|
virtual MetaInfo& Info() = 0;
|
|
virtual void SetInfo(const char* key, const void* dptr, DataType dtype, size_t num) {
|
|
auto const& ctx = *this->Ctx();
|
|
this->Info().SetInfo(ctx, key, dptr, dtype, num);
|
|
}
|
|
virtual void SetInfo(const char* key, std::string const& interface_str) {
|
|
auto const& ctx = *this->Ctx();
|
|
this->Info().SetInfo(ctx, key, StringView{interface_str});
|
|
}
|
|
/*! \brief meta information of the dataset */
|
|
[[nodiscard]] virtual const MetaInfo& Info() const = 0;
|
|
|
|
/*! \brief Get thread local memory for returning data from DMatrix. */
|
|
[[nodiscard]] XGBAPIThreadLocalEntry& GetThreadLocal() const;
|
|
/**
|
|
* \brief Get the context object of this DMatrix. The context is created during construction of
|
|
* DMatrix with user specified `nthread` parameter.
|
|
*/
|
|
[[nodiscard]] virtual Context const* Ctx() const = 0;
|
|
|
|
/**
|
|
* \brief Gets batches. Use range based for loop over BatchSet to access individual batches.
|
|
*/
|
|
template <typename T>
|
|
BatchSet<T> GetBatches();
|
|
template <typename T>
|
|
BatchSet<T> GetBatches(Context const* ctx);
|
|
template <typename T>
|
|
BatchSet<T> GetBatches(Context const* ctx, const BatchParam& param);
|
|
template <typename T>
|
|
[[nodiscard]] bool PageExists() const;
|
|
|
|
// the following are column meta data, should be able to answer them fast.
|
|
/*! \return Whether the data columns single column block. */
|
|
[[nodiscard]] virtual bool SingleColBlock() const = 0;
|
|
/*! \brief virtual destructor */
|
|
virtual ~DMatrix();
|
|
|
|
/*! \brief Whether the matrix is dense. */
|
|
[[nodiscard]] bool IsDense() const {
|
|
return Info().num_nonzero_ == Info().num_row_ * Info().num_col_;
|
|
}
|
|
|
|
/**
|
|
* \brief Load DMatrix from URI.
|
|
*
|
|
* \param uri The URI of input.
|
|
* \param silent Whether print information during loading.
|
|
* \param data_split_mode Indicate how the data was split beforehand.
|
|
* \return The created DMatrix.
|
|
*/
|
|
static DMatrix* Load(const std::string& uri, bool silent = true,
|
|
DataSplitMode data_split_mode = DataSplitMode::kRow);
|
|
|
|
/**
|
|
* \brief Creates a new DMatrix from an external data adapter.
|
|
*
|
|
* \tparam AdapterT Type of the adapter.
|
|
* \param [in,out] adapter View onto an external data.
|
|
* \param missing Values to count as missing.
|
|
* \param nthread Number of threads for construction.
|
|
* \param cache_prefix (Optional) The cache prefix for external memory.
|
|
* \param data_split_mode (Optional) Data split mode.
|
|
*
|
|
* \return a Created DMatrix.
|
|
*/
|
|
template <typename AdapterT>
|
|
static DMatrix* Create(AdapterT* adapter, float missing, int nthread,
|
|
const std::string& cache_prefix = "",
|
|
DataSplitMode data_split_mode = DataSplitMode::kRow);
|
|
|
|
/**
|
|
* \brief Create a new Quantile based DMatrix used for histogram based algorithm.
|
|
*
|
|
* \tparam DataIterHandle External iterator type, defined in C API.
|
|
* \tparam DMatrixHandle DMatrix handle, defined in C API.
|
|
* \tparam DataIterResetCallback Callback for reset, prototype defined in C API.
|
|
* \tparam XGDMatrixCallbackNext Callback for next, prototype defined in C API.
|
|
*
|
|
* \param iter External data iterator
|
|
* \param proxy A hanlde to ProxyDMatrix
|
|
* \param ref Reference Quantile DMatrix.
|
|
* \param reset Callback for reset
|
|
* \param next Callback for next
|
|
* \param missing Value that should be treated as missing.
|
|
* \param nthread number of threads used for initialization.
|
|
* \param max_bin Maximum number of bins.
|
|
*
|
|
* \return A created quantile based DMatrix.
|
|
*/
|
|
template <typename DataIterHandle, typename DMatrixHandle, typename DataIterResetCallback,
|
|
typename XGDMatrixCallbackNext>
|
|
static DMatrix* Create(DataIterHandle iter, DMatrixHandle proxy, std::shared_ptr<DMatrix> ref,
|
|
DataIterResetCallback* reset, XGDMatrixCallbackNext* next, float missing,
|
|
int nthread, bst_bin_t max_bin);
|
|
|
|
/**
|
|
* \brief Create an external memory DMatrix with callbacks.
|
|
*
|
|
* \tparam DataIterHandle External iterator type, defined in C API.
|
|
* \tparam DMatrixHandle DMatrix handle, defined in C API.
|
|
* \tparam DataIterResetCallback Callback for reset, prototype defined in C API.
|
|
* \tparam XGDMatrixCallbackNext Callback for next, prototype defined in C API.
|
|
*
|
|
* \param iter External data iterator
|
|
* \param proxy A hanlde to ProxyDMatrix
|
|
* \param reset Callback for reset
|
|
* \param next Callback for next
|
|
* \param missing Value that should be treated as missing.
|
|
* \param nthread number of threads used for initialization.
|
|
* \param cache Prefix of cache file path.
|
|
*
|
|
* \return A created external memory DMatrix.
|
|
*/
|
|
template <typename DataIterHandle, typename DMatrixHandle,
|
|
typename DataIterResetCallback, typename XGDMatrixCallbackNext>
|
|
static DMatrix *Create(DataIterHandle iter, DMatrixHandle proxy,
|
|
DataIterResetCallback *reset,
|
|
XGDMatrixCallbackNext *next, float missing,
|
|
int32_t nthread, std::string cache);
|
|
|
|
virtual DMatrix *Slice(common::Span<int32_t const> ridxs) = 0;
|
|
|
|
/**
|
|
* \brief Slice a DMatrix by columns.
|
|
*
|
|
* @param num_slices Total number of slices
|
|
* @param slice_id Index of the current slice
|
|
* @return DMatrix containing the slice of columns
|
|
*/
|
|
virtual DMatrix *SliceCol(int num_slices, int slice_id) = 0;
|
|
|
|
protected:
|
|
virtual BatchSet<SparsePage> GetRowBatches() = 0;
|
|
virtual BatchSet<CSCPage> GetColumnBatches(Context const* ctx) = 0;
|
|
virtual BatchSet<SortedCSCPage> GetSortedColumnBatches(Context const* ctx) = 0;
|
|
virtual BatchSet<EllpackPage> GetEllpackBatches(Context const* ctx, BatchParam const& param) = 0;
|
|
virtual BatchSet<GHistIndexMatrix> GetGradientIndex(Context const* ctx,
|
|
BatchParam const& param) = 0;
|
|
virtual BatchSet<ExtSparsePage> GetExtBatches(Context const* ctx, BatchParam const& param) = 0;
|
|
|
|
[[nodiscard]] virtual bool EllpackExists() const = 0;
|
|
[[nodiscard]] virtual bool GHistIndexExists() const = 0;
|
|
[[nodiscard]] virtual bool SparsePageExists() const = 0;
|
|
};
|
|
|
|
template <>
|
|
inline BatchSet<SparsePage> DMatrix::GetBatches() {
|
|
return GetRowBatches();
|
|
}
|
|
|
|
template <>
|
|
inline bool DMatrix::PageExists<EllpackPage>() const {
|
|
return this->EllpackExists();
|
|
}
|
|
|
|
template <>
|
|
inline bool DMatrix::PageExists<GHistIndexMatrix>() const {
|
|
return this->GHistIndexExists();
|
|
}
|
|
|
|
template <>
|
|
inline bool DMatrix::PageExists<SparsePage>() const {
|
|
return this->SparsePageExists();
|
|
}
|
|
|
|
template <>
|
|
inline BatchSet<SparsePage> DMatrix::GetBatches(Context const*) {
|
|
return GetRowBatches();
|
|
}
|
|
|
|
template <>
|
|
inline BatchSet<CSCPage> DMatrix::GetBatches(Context const* ctx) {
|
|
return GetColumnBatches(ctx);
|
|
}
|
|
|
|
template <>
|
|
inline BatchSet<SortedCSCPage> DMatrix::GetBatches(Context const* ctx) {
|
|
return GetSortedColumnBatches(ctx);
|
|
}
|
|
|
|
template <>
|
|
inline BatchSet<EllpackPage> DMatrix::GetBatches(Context const* ctx, BatchParam const& param) {
|
|
return GetEllpackBatches(ctx, param);
|
|
}
|
|
|
|
template <>
|
|
inline BatchSet<GHistIndexMatrix> DMatrix::GetBatches(Context const* ctx, BatchParam const& param) {
|
|
return GetGradientIndex(ctx, param);
|
|
}
|
|
|
|
template <>
|
|
inline BatchSet<ExtSparsePage> DMatrix::GetBatches(Context const* ctx, BatchParam const& param) {
|
|
return GetExtBatches(ctx, param);
|
|
}
|
|
} // namespace xgboost
|
|
|
|
DECLARE_FIELD_ENUM_CLASS(xgboost::DataSplitMode);
|
|
|
|
namespace dmlc {
|
|
DMLC_DECLARE_TRAITS(is_pod, xgboost::Entry, true);
|
|
|
|
namespace serializer {
|
|
|
|
template <>
|
|
struct Handler<xgboost::Entry> {
|
|
inline static void Write(Stream* strm, const xgboost::Entry& data) {
|
|
strm->Write(data.index);
|
|
strm->Write(data.fvalue);
|
|
}
|
|
|
|
inline static bool Read(Stream* strm, xgboost::Entry* data) {
|
|
return strm->Read(&data->index) && strm->Read(&data->fvalue);
|
|
}
|
|
};
|
|
|
|
} // namespace serializer
|
|
} // namespace dmlc
|
|
#endif // XGBOOST_DATA_H_
|