* Use external data adapters as lightweight intermediate layer between external data and DMatrix
142 lines
3.9 KiB
C++
142 lines
3.9 KiB
C++
/*!
|
|
* Copyright 2015-2019 by Contributors
|
|
* \file simple_csr_source.cc
|
|
*/
|
|
#include <dmlc/base.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/json.h>
|
|
|
|
#include "simple_csr_source.h"
|
|
#include "columnar.h"
|
|
|
|
namespace xgboost {
|
|
namespace data {
|
|
|
|
void SimpleCSRSource::Clear() {
|
|
page_.Clear();
|
|
this->info.Clear();
|
|
}
|
|
|
|
void SimpleCSRSource::CopyFrom(DMatrix* src) {
|
|
this->Clear();
|
|
this->info = src->Info();
|
|
for (const auto &batch : src->GetBatches<SparsePage>()) {
|
|
page_.Push(batch);
|
|
}
|
|
}
|
|
|
|
void SimpleCSRSource::LoadBinary(dmlc::Stream* fi) {
|
|
int tmagic;
|
|
CHECK(fi->Read(&tmagic, sizeof(tmagic)) == sizeof(tmagic)) << "invalid input file format";
|
|
CHECK_EQ(tmagic, kMagic) << "invalid format, magic number mismatch";
|
|
info.LoadBinary(fi);
|
|
fi->Read(&page_.offset.HostVector());
|
|
fi->Read(&page_.data.HostVector());
|
|
}
|
|
|
|
void SimpleCSRSource::SaveBinary(dmlc::Stream* fo) const {
|
|
int tmagic = kMagic;
|
|
fo->Write(&tmagic, sizeof(tmagic));
|
|
info.SaveBinary(fo);
|
|
fo->Write(page_.offset.HostVector());
|
|
fo->Write(page_.data.HostVector());
|
|
}
|
|
|
|
void SimpleCSRSource::BeforeFirst() {
|
|
at_first_ = true;
|
|
}
|
|
|
|
bool SimpleCSRSource::Next() {
|
|
if (!at_first_) return false;
|
|
at_first_ = false;
|
|
return true;
|
|
}
|
|
|
|
const SparsePage& SimpleCSRSource::Value() const {
|
|
return page_;
|
|
}
|
|
|
|
/*!
|
|
* Please be careful that, in official specification, the only three required fields are
|
|
* `shape', `version' and `typestr'. Any other is optional, including `data'. But here
|
|
* we have one additional requirements for input data:
|
|
*
|
|
* - `data' field is required, passing in an empty dataset is not accepted, as most (if
|
|
* not all) of our algorithms don't have test for empty dataset. An error is better
|
|
* than a crash.
|
|
*
|
|
* Missing value handling:
|
|
* Missing value is specified:
|
|
* - Ignore the validity mask from columnar format.
|
|
* - Remove entries that equals to missing value.
|
|
* - missing = NaN:
|
|
* - Remove entries that is NaN
|
|
* - missing != NaN:
|
|
* - Check for NaN entries, throw an error if found.
|
|
* Missing value is not specified:
|
|
* - Remove entries that is specifed as by validity mask.
|
|
* - Remove NaN entries.
|
|
*
|
|
* What if invalid value from dataframe is 0 but I specify missing=NaN in XGBoost? Since
|
|
* validity mask is ignored, all 0s are preserved in XGBoost.
|
|
*
|
|
* FIXME(trivialfis): Put above into document after we have a consistent way for
|
|
* processing input data.
|
|
*
|
|
* Sample input:
|
|
* [
|
|
* {
|
|
* "shape": [
|
|
* 10
|
|
* ],
|
|
* "strides": [
|
|
* 4
|
|
* ],
|
|
* "data": [
|
|
* 30074864128,
|
|
* false
|
|
* ],
|
|
* "typestr": "<f4",
|
|
* "version": 1,
|
|
* "mask": {
|
|
* "shape": [
|
|
* 64
|
|
* ],
|
|
* "strides": [
|
|
* 1
|
|
* ],
|
|
* "data": [
|
|
* 30074864640,
|
|
* false
|
|
* ],
|
|
* "typestr": "|i1",
|
|
* "version": 1
|
|
* }
|
|
* }
|
|
* ]
|
|
*/
|
|
void SimpleCSRSource::CopyFrom(std::string const& cuda_interfaces_str,
|
|
bool has_missing, float missing) {
|
|
Json interfaces = Json::Load({cuda_interfaces_str.c_str(),
|
|
cuda_interfaces_str.size()});
|
|
std::vector<Json> const& columns = get<Array>(interfaces);
|
|
size_t n_columns = columns.size();
|
|
CHECK_GT(n_columns, 0) << "Number of columns must not eqaul to 0.";
|
|
|
|
auto const& typestr = get<String const>(columns[0]["typestr"]);
|
|
CHECK_EQ(typestr.size(), 3) << ColumnarErrors::TypestrFormat();
|
|
CHECK_NE(typestr.front(), '>') << ColumnarErrors::BigEndian();
|
|
|
|
this->FromDeviceColumnar(columns, has_missing, missing);
|
|
}
|
|
|
|
#if !defined(XGBOOST_USE_CUDA)
|
|
void SimpleCSRSource::FromDeviceColumnar(std::vector<Json> const& columns,
|
|
bool has_missing, float missing) {
|
|
LOG(FATAL) << "XGBoost version is not compiled with GPU support";
|
|
}
|
|
#endif // !defined(XGBOOST_USE_CUDA)
|
|
|
|
} // namespace data
|
|
} // namespace xgboost
|