* Added GPU objective function and no-copy interface. - xgboost::HostDeviceVector<T> syncs automatically between host and device - no-copy interfaces have been added - default implementations just sync the data to host and call the implementations with std::vector - GPU objective function, predictor, histogram updater process data directly on GPU
111 lines
4.0 KiB
C++
111 lines
4.0 KiB
C++
/*!
|
|
* Copyright 2017 XGBoost contributors
|
|
*/
|
|
#ifndef XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
|
|
#define XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
|
|
|
|
#include <dmlc/omp.h>
|
|
#include <xgboost/logging.h>
|
|
#include <algorithm>
|
|
#include "../common/math.h"
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
// common regressions
|
|
// linear regression
|
|
struct LinearSquareLoss {
|
|
// duplication is necessary, as __device__ specifier
|
|
// cannot be made conditional on template parameter
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
|
|
XGBOOST_DEVICE static bool CheckLabel(bst_float x) { return true; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
return predt - label;
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
return 1.0f;
|
|
}
|
|
template <typename T>
|
|
static T PredTransform(T x) { return x; }
|
|
template <typename T>
|
|
static T FirstOrderGradient(T predt, T label) { return predt - label; }
|
|
template <typename T>
|
|
static T SecondOrderGradient(T predt, T label) { return T(1.0f); }
|
|
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
|
|
static const char* LabelErrorMsg() { return ""; }
|
|
static const char* DefaultEvalMetric() { return "rmse"; }
|
|
};
|
|
|
|
// logistic loss for probability regression task
|
|
struct LogisticRegression {
|
|
// duplication is necessary, as __device__ specifier
|
|
// cannot be made conditional on template parameter
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return common::Sigmoid(x); }
|
|
XGBOOST_DEVICE static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
return predt - label;
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
const float eps = 1e-16f;
|
|
return fmaxf(predt * (1.0f - predt), eps);
|
|
}
|
|
template <typename T>
|
|
static T PredTransform(T x) { return common::Sigmoid(x); }
|
|
template <typename T>
|
|
static T FirstOrderGradient(T predt, T label) { return predt - label; }
|
|
template <typename T>
|
|
static T SecondOrderGradient(T predt, T label) {
|
|
const T eps = T(1e-16f);
|
|
return std::max(predt * (T(1.0f) - predt), eps);
|
|
}
|
|
static bst_float ProbToMargin(bst_float base_score) {
|
|
CHECK(base_score > 0.0f && base_score < 1.0f)
|
|
<< "base_score must be in (0,1) for logistic loss";
|
|
return -logf(1.0f / base_score - 1.0f);
|
|
}
|
|
static const char* LabelErrorMsg() {
|
|
return "label must be in [0,1] for logistic regression";
|
|
}
|
|
static const char* DefaultEvalMetric() { return "rmse"; }
|
|
};
|
|
|
|
// logistic loss for binary classification task
|
|
struct LogisticClassification : public LogisticRegression {
|
|
static const char* DefaultEvalMetric() { return "error"; }
|
|
};
|
|
|
|
// logistic loss, but predict un-transformed margin
|
|
struct LogisticRaw : public LogisticRegression {
|
|
// duplication is necessary, as __device__ specifier
|
|
// cannot be made conditional on template parameter
|
|
XGBOOST_DEVICE static bst_float PredTransform(bst_float x) { return x; }
|
|
XGBOOST_DEVICE static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
|
|
predt = common::Sigmoid(predt);
|
|
return predt - label;
|
|
}
|
|
XGBOOST_DEVICE static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
|
|
const float eps = 1e-16f;
|
|
predt = common::Sigmoid(predt);
|
|
return fmaxf(predt * (1.0f - predt), eps);
|
|
}
|
|
template <typename T>
|
|
static T PredTransform(T x) { return x; }
|
|
template <typename T>
|
|
static T FirstOrderGradient(T predt, T label) {
|
|
predt = common::Sigmoid(predt);
|
|
return predt - label;
|
|
}
|
|
template <typename T>
|
|
static T SecondOrderGradient(T predt, T label) {
|
|
const T eps = T(1e-16f);
|
|
predt = common::Sigmoid(predt);
|
|
return std::max(predt * (T(1.0f) - predt), eps);
|
|
}
|
|
static const char* DefaultEvalMetric() { return "auc"; }
|
|
};
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|
|
|
|
#endif // XGBOOST_OBJECTIVE_REGRESSION_LOSS_H_
|