xgboost/src/common/column_matrix.h
2024-03-20 16:14:38 -07:00

440 lines
16 KiB
C++

/**
* Copyright 2017-2024, XGBoost Contributors
* \file column_matrix.h
* \brief Utility for fast column-wise access
* \author Philip Cho
*/
#ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_
#define XGBOOST_COMMON_COLUMN_MATRIX_H_
#include <algorithm>
#include <cstddef> // for size_t, byte
#include <cstdint> // for uint8_t
#include <limits>
#include <memory>
#include <type_traits> // for enable_if_t, is_same_v, is_signed_v
#include <utility> // for move
#include "../data/adapter.h"
#include "../data/gradient_index.h"
#include "algorithm.h"
#include "bitfield.h" // for RBitField8
#include "hist_util.h"
#include "ref_resource_view.h" // for RefResourceView
#include "xgboost/base.h" // for bst_bin_t
#include "xgboost/span.h" // for Span
namespace xgboost::common {
class ColumnMatrix;
class AlignedFileWriteStream;
class AlignedResourceReadStream;
/*! \brief column type */
enum ColumnType : std::uint8_t { kDenseColumn, kSparseColumn };
/*! \brief a column storage, to be used with ApplySplit. Note that each
bin id is stored as index[i] + index_base.
Different types of column index for each column allow
to reduce the memory usage. */
template <typename BinIdxType>
class Column {
public:
static constexpr bst_bin_t kMissingId = -1;
Column(common::Span<const BinIdxType> index, bst_bin_t least_bin_idx)
: index_(index), index_base_(least_bin_idx) {}
virtual ~Column() = default;
[[nodiscard]] bst_bin_t GetGlobalBinIdx(size_t idx) const {
return index_base_ + static_cast<bst_bin_t>(index_[idx]);
}
/* returns number of elements in column */
[[nodiscard]] size_t Size() const { return index_.size(); }
private:
/* bin indexes in range [0, max_bins - 1] */
common::Span<const BinIdxType> index_;
/* bin index offset for specific feature */
bst_bin_t const index_base_;
};
template <typename BinIdxT>
class SparseColumnIter : public Column<BinIdxT> {
private:
using Base = Column<BinIdxT>;
/* indexes of rows */
common::Span<const size_t> row_ind_;
size_t idx_;
[[nodiscard]] size_t const* RowIndices() const { return row_ind_.data(); }
public:
SparseColumnIter(common::Span<const BinIdxT> index, bst_bin_t least_bin_idx,
common::Span<const size_t> row_ind, bst_idx_t first_row_idx)
: Base{index, least_bin_idx}, row_ind_(row_ind) {
// first_row_id is the first row in the leaf partition
const size_t* row_data = RowIndices();
const size_t column_size = this->Size();
// search first nonzero row with index >= rid_span.front()
// note that the input row partition is always sorted.
const size_t* p = std::lower_bound(row_data, row_data + column_size, first_row_idx);
// column_size if all missing
idx_ = p - row_data;
}
SparseColumnIter(SparseColumnIter const&) = delete;
SparseColumnIter(SparseColumnIter&&) = default;
[[nodiscard]] size_t GetRowIdx(size_t idx) const { return RowIndices()[idx]; }
bst_bin_t operator[](size_t rid) {
const size_t column_size = this->Size();
if (!((idx_) < column_size)) {
return this->kMissingId;
}
// find next non-missing row
while ((idx_) < column_size && GetRowIdx(idx_) < rid) {
++(idx_);
}
if (((idx_) < column_size) && GetRowIdx(idx_) == rid) {
// non-missing row found
return this->GetGlobalBinIdx(idx_);
} else {
// at the end of column
return this->kMissingId;
}
}
};
/**
* @brief Column stored as a dense vector. It might still contain missing values as
* indicated by the missing flags.
*/
template <typename BinIdxT, bool any_missing>
class DenseColumnIter : public Column<BinIdxT> {
private:
using Base = Column<BinIdxT>;
/* flags for missing values in dense columns */
LBitField32 missing_flags_;
size_t feature_offset_;
public:
explicit DenseColumnIter(common::Span<const BinIdxT> index, bst_bin_t index_base,
LBitField32 missing_flags, size_t feature_offset)
: Base{index, index_base}, missing_flags_{missing_flags}, feature_offset_{feature_offset} {}
DenseColumnIter(DenseColumnIter const&) = delete;
DenseColumnIter(DenseColumnIter&&) = default;
[[nodiscard]] bool IsMissing(size_t ridx) const {
return missing_flags_.Check(feature_offset_ + ridx);
}
bst_bin_t operator[](size_t ridx) const {
if (any_missing) {
return IsMissing(ridx) ? this->kMissingId : this->GetGlobalBinIdx(ridx);
} else {
return this->GetGlobalBinIdx(ridx);
}
}
};
/**
* @brief Column major matrix for gradient index on CPU.
*
* This matrix contains both dense columns and sparse columns, the type of the column
* is controlled by the sparse threshold parameter. When the number of missing values
* in a column is below the threshold it's classified as dense column.
*/
class ColumnMatrix {
/**
* @brief A bit set for indicating whether an element in a dense column is missing.
*/
struct MissingIndicator {
using BitFieldT = LBitField32;
using T = typename BitFieldT::value_type;
BitFieldT missing;
RefResourceView<T> storage;
static_assert(std::is_same_v<T, std::uint32_t>);
template <typename U>
[[nodiscard]] std::enable_if_t<!std::is_signed_v<U>, U> static InitValue(bool init) {
return init ? ~U{0} : U{0};
}
MissingIndicator() = default;
/**
* @param n_elements Size of the bit set
* @param init Initialize the indicator to true or false.
*/
MissingIndicator(std::size_t n_elements, bool init) {
auto m_size = missing.ComputeStorageSize(n_elements);
storage = common::MakeFixedVecWithMalloc(m_size, InitValue<T>(init));
this->InitView();
}
/** @brief Set the i^th element to be a valid element (instead of missing). */
void SetValid(typename LBitField32::index_type i) {missing.Clear(i);}
/** @brief assign the storage to the view. */
void InitView() {
missing = LBitField32{Span{storage.data(), static_cast<size_t>(storage.size())}};
}
void GrowTo(std::size_t n_elements, bool init) {
CHECK(storage.Resource()->Type() == ResourceHandler::kMalloc)
<< "[Internal Error]: Cannot grow the vector when external memory is used.";
auto m_size = missing.ComputeStorageSize(n_elements);
CHECK_GE(m_size, storage.size());
if (m_size == storage.size()) {
return;
}
// grow the storage
auto resource = std::dynamic_pointer_cast<common::MallocResource>(storage.Resource());
CHECK(resource);
resource->Resize(m_size * sizeof(T), InitValue<std::byte>(init));
storage = RefResourceView<T>{resource->DataAs<T>(), m_size, resource};
this->InitView();
}
};
void InitStorage(GHistIndexMatrix const& gmat, double sparse_threshold);
template <typename ColumnBinT, typename BinT, typename RIdx>
void SetBinSparse(BinT bin_id, RIdx rid, bst_feature_t fid, ColumnBinT* local_index) {
if (type_[fid] == kDenseColumn) {
ColumnBinT* begin = &local_index[feature_offsets_[fid]];
begin[rid] = bin_id - index_base_[fid];
// not thread-safe with bit field.
// FIXME(jiamingy): We can directly assign kMissingId to the index to avoid missing
// flags.
missing_.SetValid(feature_offsets_[fid] + rid);
} else {
ColumnBinT* begin = &local_index[feature_offsets_[fid]];
begin[num_nonzeros_[fid]] = bin_id - index_base_[fid];
row_ind_[feature_offsets_[fid] + num_nonzeros_[fid]] = rid;
++num_nonzeros_[fid];
}
}
public:
// get number of features
[[nodiscard]] bst_feature_t GetNumFeature() const {
return static_cast<bst_feature_t>(type_.size());
}
ColumnMatrix() = default;
ColumnMatrix(GHistIndexMatrix const& gmat, double sparse_threshold) {
this->InitStorage(gmat, sparse_threshold);
}
/**
* @brief Initialize ColumnMatrix from GHistIndexMatrix with reference to the original
* SparsePage.
*/
void InitFromSparse(SparsePage const& page, const GHistIndexMatrix& gmat, double sparse_threshold,
int32_t n_threads) {
auto batch = data::SparsePageAdapterBatch{page.GetView()};
this->InitStorage(gmat, sparse_threshold);
// ignore base row id here as we always has one column matrix for each sparse page.
this->PushBatch(n_threads, batch, std::numeric_limits<float>::quiet_NaN(), gmat, 0);
}
/**
* @brief Initialize ColumnMatrix from GHistIndexMatrix without reference to actual
* data.
*
* This function requires a binary search for each bin to get back the feature index
* for those bins.
*/
void InitFromGHist(Context const* ctx, GHistIndexMatrix const& gmat) {
auto n_threads = ctx->Threads();
if (!any_missing_) {
// row index is compressed, we need to dispatch it.
DispatchBinType(gmat.index.GetBinTypeSize(), [&, size = gmat.Size(), n_threads = n_threads,
n_features = gmat.Features()](auto t) {
using RowBinIdxT = decltype(t);
SetIndexNoMissing(gmat.base_rowid, gmat.index.data<RowBinIdxT>(), size, n_features,
n_threads);
});
} else {
SetIndexMixedColumns(gmat);
}
}
[[nodiscard]] bool IsInitialized() const { return !type_.empty(); }
/**
* \brief Push batch of data for Quantile DMatrix support.
*
* \param batch Input data wrapped inside a adapter batch.
* \param gmat The row-major histogram index that contains index for ALL data.
* \param base_rowid The beginning row index for current batch.
*/
template <typename Batch>
void PushBatch(int32_t n_threads, Batch const& batch, float missing, GHistIndexMatrix const& gmat,
size_t base_rowid) {
// pre-fill index_ for dense columns
if (!any_missing_) {
// row index is compressed, we need to dispatch it.
// use base_rowid from input parameter as gmat is a single matrix that contains all
// the histogram index instead of being only a batch.
DispatchBinType(gmat.index.GetBinTypeSize(), [&, size = batch.Size(), n_threads = n_threads,
n_features = gmat.Features()](auto t) {
using RowBinIdxT = decltype(t);
SetIndexNoMissing(base_rowid, gmat.index.data<RowBinIdxT>(), size, n_features, n_threads);
});
} else {
SetIndexMixedColumns(base_rowid, batch, gmat, missing);
}
}
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
void SetTypeSize(size_t max_bin_per_feat) {
if ((max_bin_per_feat - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max())) {
bins_type_size_ = kUint8BinsTypeSize;
} else if ((max_bin_per_feat - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
bins_type_size_ = kUint16BinsTypeSize;
} else {
bins_type_size_ = kUint32BinsTypeSize;
}
}
template <typename BinIdxType>
auto SparseColumn(bst_feature_t fidx, bst_idx_t first_row_idx) const {
const size_t feature_offset = feature_offsets_[fidx]; // to get right place for certain feature
const size_t column_size = feature_offsets_[fidx + 1] - feature_offset;
common::Span<const BinIdxType> bin_index = {
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
column_size};
return SparseColumnIter<BinIdxType>(bin_index, index_base_[fidx],
{&row_ind_[feature_offset], column_size}, first_row_idx);
}
template <typename BinIdxType, bool any_missing>
auto DenseColumn(bst_feature_t fidx) const {
const size_t feature_offset = feature_offsets_[fidx]; // to get right place for certain feature
const size_t column_size = feature_offsets_[fidx + 1] - feature_offset;
common::Span<const BinIdxType> bin_index = {
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
column_size};
return DenseColumnIter<BinIdxType, any_missing>{
bin_index, static_cast<bst_bin_t>(index_base_[fidx]), missing_.missing, feature_offset};
}
// all columns are dense column and has no missing value
// FIXME(jiamingy): We don't need a column matrix if there's no missing value.
template <typename RowBinIdxT>
void SetIndexNoMissing(bst_idx_t base_rowid, RowBinIdxT const* row_index, const size_t n_samples,
const size_t n_features, int32_t n_threads) {
missing_.GrowTo(feature_offsets_[n_features], false);
DispatchBinType(bins_type_size_, [&](auto t) {
using ColumnBinT = decltype(t);
auto column_index = Span<ColumnBinT>{reinterpret_cast<ColumnBinT*>(index_.data()),
static_cast<size_t>(index_.size() / sizeof(ColumnBinT))};
ParallelFor(n_samples, n_threads, [&](auto rid) {
rid += base_rowid;
const size_t ibegin = rid * n_features;
const size_t iend = (rid + 1) * n_features;
for (size_t i = ibegin, j = 0; i < iend; ++i, ++j) {
const size_t idx = feature_offsets_[j];
// No need to add offset, as row index is compressed and stores the local index
column_index[idx + rid] = row_index[i];
}
});
});
}
/**
* \brief Set column index for both dense and sparse columns
*/
template <typename Batch>
void SetIndexMixedColumns(size_t base_rowid, Batch const& batch, const GHistIndexMatrix& gmat,
float missing) {
auto n_features = gmat.Features();
missing_.GrowTo(feature_offsets_[n_features], true);
auto const* row_index = gmat.index.data<std::uint32_t>() + gmat.row_ptr[base_rowid];
if (num_nonzeros_.empty()) {
num_nonzeros_ = common::MakeFixedVecWithMalloc(n_features, std::size_t{0});
} else {
CHECK_EQ(num_nonzeros_.size(), n_features);
}
auto is_valid = data::IsValidFunctor{missing};
DispatchBinType(bins_type_size_, [&](auto t) {
using ColumnBinT = decltype(t);
ColumnBinT* local_index = reinterpret_cast<ColumnBinT*>(index_.data());
size_t const batch_size = batch.Size();
size_t k{0};
for (size_t rid = 0; rid < batch_size; ++rid) {
auto line = batch.GetLine(rid);
for (size_t i = 0; i < line.Size(); ++i) {
auto coo = line.GetElement(i);
if (is_valid(coo)) {
auto fid = coo.column_idx;
const uint32_t bin_id = row_index[k];
SetBinSparse(bin_id, rid + base_rowid, fid, local_index);
++k;
}
}
}
});
}
/**
* \brief Set column index for both dense and sparse columns, but with only GHistMatrix
* available and requires a search for each bin.
*/
void SetIndexMixedColumns(const GHistIndexMatrix& gmat) {
auto n_features = gmat.Features();
missing_ = MissingIndicator{feature_offsets_[n_features], true};
num_nonzeros_ = common::MakeFixedVecWithMalloc(n_features, std::size_t{0});
DispatchBinType(bins_type_size_, [&](auto t) {
using ColumnBinT = decltype(t);
ColumnBinT* local_index = reinterpret_cast<ColumnBinT*>(index_.data());
CHECK(this->any_missing_);
AssignColumnBinIndex(gmat,
[&](auto bin_idx, std::size_t, std::size_t ridx, bst_feature_t fidx) {
SetBinSparse(bin_idx, ridx, fidx, local_index);
});
});
}
[[nodiscard]] BinTypeSize GetTypeSize() const { return bins_type_size_; }
[[nodiscard]] auto GetColumnType(bst_feature_t fidx) const { return type_[fidx]; }
// And this returns part of state
[[nodiscard]] bool AnyMissing() const { return any_missing_; }
// IO procedures for external memory.
[[nodiscard]] bool Read(AlignedResourceReadStream* fi, uint32_t const* index_base);
[[nodiscard]] std::size_t Write(AlignedFileWriteStream* fo) const;
[[nodiscard]] MissingIndicator const& Missing() const { return missing_; }
private:
RefResourceView<std::uint8_t> index_;
RefResourceView<ColumnType> type_;
/** @brief indptr of a CSC matrix. */
RefResourceView<std::size_t> row_ind_;
/** @brief indicate where each column's index and row_ind is stored. */
RefResourceView<std::size_t> feature_offsets_;
/** @brief The number of nnz of each column. */
RefResourceView<std::size_t> num_nonzeros_;
// index_base_[fid]: least bin id for feature fid
std::uint32_t const* index_base_;
MissingIndicator missing_;
BinTypeSize bins_type_size_;
bool any_missing_;
};
} // namespace xgboost::common
#endif // XGBOOST_COMMON_COLUMN_MATRIX_H_