xgboost/tests/python/test_basic.py
2020-02-13 20:41:58 +08:00

320 lines
11 KiB
Python

# -*- coding: utf-8 -*-
import sys
from contextlib import contextmanager
try:
# python 2
from StringIO import StringIO
except ImportError:
# python 3
from io import StringIO
import numpy as np
import xgboost as xgb
import unittest
import json
from pathlib import Path
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
@contextmanager
def captured_output():
"""
Reassign stdout temporarily in order to test printed statements
Taken from: https://stackoverflow.com/questions/4219717/how-to-assert-output-with-nosetest-unittest-in-python
Also works for pytest.
"""
new_out, new_err = StringIO(), StringIO()
old_out, old_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = new_out, new_err
yield sys.stdout, sys.stderr
finally:
sys.stdout, sys.stderr = old_out, old_err
class TestBasic(unittest.TestCase):
def test_basic(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth': 2, 'eta': 1,
'objective': 'binary:logistic'}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model')
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
def test_record_results(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
'objective': 'binary:logistic'}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
result = {}
res2 = {}
xgb.train(param, dtrain, num_round, watchlist,
callbacks=[xgb.callback.record_evaluation(result)])
xgb.train(param, dtrain, num_round, watchlist,
evals_result=res2)
assert result['train']['error'][0] < 0.1
assert res2 == result
def test_multiclass(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'num_class': 2}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds))
if preds[i] != labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model')
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
def test_dump(self):
data = np.random.randn(100, 2)
target = np.array([0, 1] * 50)
features = ['Feature1', 'Feature2']
dm = xgb.DMatrix(data, label=target, feature_names=features)
params = {'objective': 'binary:logistic',
'eval_metric': 'logloss',
'eta': 0.3,
'max_depth': 1}
bst = xgb.train(params, dm, num_boost_round=1)
# number of feature importances should == number of features
dump1 = bst.get_dump()
self.assertEqual(len(dump1), 1, "Expected only 1 tree to be dumped.")
self.assertEqual(len(dump1[0].splitlines()), 3,
"Expected 1 root and 2 leaves - 3 lines in dump.")
dump2 = bst.get_dump(with_stats=True)
self.assertEqual(dump2[0].count('\n'), 3,
"Expected 1 root and 2 leaves - 3 lines in dump.")
self.assertGreater(dump2[0].find('\n'), dump1[0].find('\n'),
"Expected more info when with_stats=True is given.")
dump3 = bst.get_dump(dump_format="json")
dump3j = json.loads(dump3[0])
self.assertEqual(dump3j["nodeid"], 0, "Expected the root node on top.")
dump4 = bst.get_dump(dump_format="json", with_stats=True)
dump4j = json.loads(dump4[0])
self.assertIn("gain", dump4j, "Expected 'gain' to be dumped in JSON.")
def test_load_file_invalid(self):
self.assertRaises(xgb.core.XGBoostError, xgb.Booster,
model_file='incorrect_path')
self.assertRaises(xgb.core.XGBoostError, xgb.Booster,
model_file=u'不正なパス')
def test_dmatrix_numpy_init_omp(self):
rows = [1000, 11326, 15000]
cols = 50
for row in rows:
X = np.random.randn(row, cols)
y = np.random.randn(row).astype('f')
dm = xgb.DMatrix(X, y, nthread=0)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols
dm = xgb.DMatrix(X, y, nthread=10)
np.testing.assert_array_equal(dm.get_label(), y)
assert dm.num_row() == row
assert dm.num_col() == cols
def test_cv(self):
dm = xgb.DMatrix(dpath + 'agaricus.txt.train')
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
'objective': 'binary:logistic'}
# return np.ndarray
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
assert isinstance(cv, dict)
assert len(cv) == (4)
def test_cv_no_shuffle(self):
dm = xgb.DMatrix(dpath + 'agaricus.txt.train')
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
'objective': 'binary:logistic'}
# return np.ndarray
cv = xgb.cv(params, dm, num_boost_round=10, shuffle=False, nfold=10,
as_pandas=False)
assert isinstance(cv, dict)
assert len(cv) == (4)
def test_cv_explicit_fold_indices(self):
dm = xgb.DMatrix(dpath + 'agaricus.txt.train')
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective':
'binary:logistic'}
folds = [
# Train Test
([1, 3], [5, 8]),
([7, 9], [23, 43]),
]
# return np.ndarray
cv = xgb.cv(params, dm, num_boost_round=10, folds=folds,
as_pandas=False)
assert isinstance(cv, dict)
assert len(cv) == (4)
def test_cv_explicit_fold_indices_labels(self):
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0, 'objective':
'reg:squarederror'}
N = 100
F = 3
dm = xgb.DMatrix(data=np.random.randn(N, F), label=np.arange(N))
folds = [
# Train Test
([1, 3], [5, 8]),
([7, 9], [23, 43, 11]),
]
# Use callback to log the test labels in each fold
def cb(cbackenv):
print([fold.dtest.get_label() for fold in cbackenv.cvfolds])
# Run cross validation and capture standard out to test callback result
with captured_output() as (out, err):
xgb.cv(
params, dm, num_boost_round=1, folds=folds, callbacks=[cb],
as_pandas=False
)
output = out.getvalue().strip()
solution = ('[array([5., 8.], dtype=float32), array([23., 43., 11.],' +
' dtype=float32)]')
assert output == solution
class TestBasicPathLike(unittest.TestCase):
"""Unit tests using the os_fspath and pathlib.Path for file interaction."""
def test_DMatrix_init_from_path(self):
"""Initialization from the data path."""
dpath = Path('demo/data')
dtrain = xgb.DMatrix(dpath / 'agaricus.txt.train')
assert dtrain.num_row() == 6513
assert dtrain.num_col() == 127
def test_DMatrix_save_to_path(self):
"""Saving to a binary file using pathlib from a DMatrix."""
data = np.random.randn(100, 2)
target = np.array([0, 1] * 50)
features = ['Feature1', 'Feature2']
dm = xgb.DMatrix(data, label=target, feature_names=features)
# save, assert exists, remove file
binary_path = Path("dtrain.bin")
dm.save_binary(binary_path)
assert binary_path.exists()
Path.unlink(binary_path)
def test_Booster_init_invalid_path(self):
"""An invalid model_file path should raise XGBoostError."""
self.assertRaises(xgb.core.XGBoostError, xgb.Booster,
model_file=Path("invalidpath"))
def test_Booster_save_and_load(self):
"""Saving and loading model files from paths."""
save_path = Path("saveload.model")
data = np.random.randn(100, 2)
target = np.array([0, 1] * 50)
features = ['Feature1', 'Feature2']
dm = xgb.DMatrix(data, label=target, feature_names=features)
params = {'objective': 'binary:logistic',
'eval_metric': 'logloss',
'eta': 0.3,
'max_depth': 1}
bst = xgb.train(params, dm, num_boost_round=1)
# save, assert exists
bst.save_model(save_path)
assert save_path.exists()
def dump_assertions(dump):
"""Assertions for the expected dump from Booster"""
assert len(dump) == 1, 'Exepcted only 1 tree to be dumped.'
assert len(dump[0].splitlines()) == 3, 'Expected 1 root and 2 leaves - 3 lines.'
# load the model again using Path
bst2 = xgb.Booster(model_file=save_path)
dump2 = bst2.get_dump()
dump_assertions(dump2)
# load again using load_model
bst3 = xgb.Booster()
bst3.load_model(save_path)
dump3= bst3.get_dump()
dump_assertions(dump3)
# remove file
Path.unlink(save_path)
def test_os_fspath(self):
"""Core properties of the os_fspath function."""
# strings are returned unmodified
assert '' == xgb.compat.os_fspath('')
assert '/this/path' == xgb.compat.os_fspath('/this/path')
# bytes are returned unmodified
assert b'/this/path' == xgb.compat.os_fspath(b'/this/path')
# path objects are returned as string representation
path_test = Path('this') / 'path'
assert str(path_test) == xgb.compat.os_fspath(path_test)
# invalid values raise Type error
self.assertRaises(TypeError, xgb.compat.os_fspath, 123)