87 lines
3.0 KiB
Python
87 lines
3.0 KiB
Python
#!/usr/bin/python
|
|
import multiprocessing
|
|
import sys
|
|
import time
|
|
|
|
import xgboost as xgb
|
|
import xgboost.federated
|
|
|
|
SERVER_KEY = 'server-key.pem'
|
|
SERVER_CERT = 'server-cert.pem'
|
|
CLIENT_KEY = 'client-key.pem'
|
|
CLIENT_CERT = 'client-cert.pem'
|
|
|
|
|
|
def run_server(port: int, world_size: int, with_ssl: bool) -> None:
|
|
if with_ssl:
|
|
xgboost.federated.run_federated_server(port, world_size, SERVER_KEY, SERVER_CERT,
|
|
CLIENT_CERT)
|
|
else:
|
|
xgboost.federated.run_federated_server(port, world_size)
|
|
|
|
|
|
def run_worker(port: int, world_size: int, rank: int, with_ssl: bool, with_gpu: bool) -> None:
|
|
communicator_env = {
|
|
'xgboost_communicator': 'federated',
|
|
'federated_server_address': f'localhost:{port}',
|
|
'federated_world_size': world_size,
|
|
'federated_rank': rank
|
|
}
|
|
if with_ssl:
|
|
communicator_env['federated_server_cert'] = SERVER_CERT
|
|
communicator_env['federated_client_key'] = CLIENT_KEY
|
|
communicator_env['federated_client_cert'] = CLIENT_CERT
|
|
|
|
# Always call this before using distributed module
|
|
with xgb.collective.CommunicatorContext(**communicator_env):
|
|
# Load file, file will not be sharded in federated mode.
|
|
dtrain = xgb.DMatrix('agaricus.txt.train-%02d' % rank)
|
|
dtest = xgb.DMatrix('agaricus.txt.test-%02d' % rank)
|
|
|
|
# Specify parameters via map, definition are same as c++ version
|
|
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
|
|
if with_gpu:
|
|
param['tree_method'] = 'gpu_hist'
|
|
param['gpu_id'] = rank
|
|
|
|
# Specify validations set to watch performance
|
|
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
|
|
num_round = 20
|
|
|
|
# Run training, all the features in training API is available.
|
|
bst = xgb.train(param, dtrain, num_round, evals=watchlist,
|
|
early_stopping_rounds=2)
|
|
|
|
# Save the model, only ask process 0 to save the model.
|
|
if xgb.collective.get_rank() == 0:
|
|
bst.save_model("test.model.json")
|
|
xgb.collective.communicator_print("Finished training\n")
|
|
|
|
|
|
def run_federated(with_ssl: bool = True, with_gpu: bool = False) -> None:
|
|
port = 9091
|
|
world_size = int(sys.argv[1])
|
|
|
|
server = multiprocessing.Process(target=run_server, args=(port, world_size, with_ssl))
|
|
server.start()
|
|
time.sleep(1)
|
|
if not server.is_alive():
|
|
raise Exception("Error starting Federated Learning server")
|
|
|
|
workers = []
|
|
for rank in range(world_size):
|
|
worker = multiprocessing.Process(target=run_worker,
|
|
args=(port, world_size, rank, with_ssl, with_gpu))
|
|
workers.append(worker)
|
|
worker.start()
|
|
for worker in workers:
|
|
worker.join()
|
|
server.terminate()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_federated(with_ssl=True, with_gpu=False)
|
|
run_federated(with_ssl=False, with_gpu=False)
|
|
run_federated(with_ssl=True, with_gpu=True)
|
|
run_federated(with_ssl=False, with_gpu=True)
|