xgboost/tests/cpp/predictor/test_cpu_predictor.cc
Jiaming Yuan c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00

100 lines
3.3 KiB
C++

// Copyright by Contributors
#include <dmlc/filesystem.h>
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../helpers.h"
namespace xgboost {
TEST(cpu_predictor, Test) {
auto lparam = CreateEmptyGenericParam(0, 0);
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam));
gbm::GBTreeModel model = CreateTestModel();
int n_row = 5;
int n_col = 5;
auto dmat = CreateDMatrix(n_row, n_col, 0);
// Test predict batch
HostDeviceVector<float> out_predictions;
cpu_predictor->PredictBatch((*dmat).get(), &out_predictions, model, 0);
std::vector<float>& out_predictions_h = out_predictions.HostVector();
for (int i = 0; i < out_predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto &batch = *(*dmat)->GetRowBatches().begin();
for (int i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf((*dmat).get(), &leaf_out_predictions, model);
for (auto v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model);
for (auto const& contri : out_contribution) {
ASSERT_EQ(contri, 1.5);
}
// Test predict contribution (approximate method)
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model, true);
for (auto const& contri : out_contribution) {
ASSERT_EQ(contri, 1.5);
}
delete dmat;
}
TEST(cpu_predictor, ExternalMemoryTest) {
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(12, 64);
auto lparam = CreateEmptyGenericParam(0, 0);
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam));
gbm::GBTreeModel model = CreateTestModel();
// Test predict batch
HostDeviceVector<float> out_predictions;
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
std::vector<float> &out_predictions_h = out_predictions.HostVector();
EXPECT_EQ(out_predictions.Size(), dmat->Info().num_row_);
for (const auto& v : out_predictions_h) {
ASSERT_EQ(v, 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
EXPECT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
for (const auto& v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
EXPECT_EQ(out_contribution.size(), dmat->Info().num_row_);
for (const auto& v : out_contribution) {
ASSERT_EQ(v, 1.5);
}
// Test predict contribution (approximate method)
std::vector<float> out_contribution_approximate;
cpu_predictor->PredictContribution(dmat.get(), &out_contribution_approximate, model, true);
EXPECT_EQ(out_contribution_approximate.size(), dmat->Info().num_row_);
for (const auto& v : out_contribution_approximate) {
ASSERT_EQ(v, 1.5);
}
}
} // namespace xgboost