xgboost/include/xgboost/tree_updater.h
Jiaming Yuan c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00

102 lines
3.3 KiB
C++

/*!
* Copyright 2014-2019 by Contributors
* \file tree_updater.h
* \brief General primitive for tree learning,
* Updating a collection of trees given the information.
* \author Tianqi Chen
*/
#ifndef XGBOOST_TREE_UPDATER_H_
#define XGBOOST_TREE_UPDATER_H_
#include <dmlc/registry.h>
#include <xgboost/base.h>
#include <xgboost/data.h>
#include <xgboost/tree_model.h>
#include <xgboost/generic_parameters.h>
#include <functional>
#include <vector>
#include <utility>
#include <string>
#include "../../src/common/host_device_vector.h"
namespace xgboost {
/*!
* \brief interface of tree update module, that performs update of a tree.
*/
class TreeUpdater {
protected:
LearnerTrainParam const* tparam_;
public:
/*! \brief virtual destructor */
virtual ~TreeUpdater() = default;
/*!
* \brief Initialize the updater with given arguments.
* \param args arguments to the objective function.
*/
virtual void Init(const std::vector<std::pair<std::string, std::string> >& args) = 0;
/*!
* \brief perform update to the tree models
* \param gpair the gradient pair statistics of the data
* \param data The data matrix passed to the updater.
* \param trees references the trees to be updated, updater will change the content of trees
* note: all the trees in the vector are updated, with the same statistics,
* but maybe different random seeds, usually one tree is passed in at a time,
* there can be multiple trees when we train random forest style model
*/
virtual void Update(HostDeviceVector<GradientPair>* gpair,
DMatrix* data,
const std::vector<RegTree*>& trees) = 0;
/*!
* \brief determines whether updater has enough knowledge about a given dataset
* to quickly update prediction cache its training data and performs the
* update if possible.
* \param data: data matrix
* \param out_preds: prediction cache to be updated
* \return boolean indicating whether updater has capability to update
* the prediction cache. If true, the prediction cache will have been
* updated by the time this function returns.
*/
virtual bool UpdatePredictionCache(const DMatrix* data,
HostDeviceVector<bst_float>* out_preds) {
return false;
}
/*!
* \brief Create a tree updater given name
* \param name Name of the tree updater.
*/
static TreeUpdater* Create(const std::string& name, LearnerTrainParam const* tparam);
};
/*!
* \brief Registry entry for tree updater.
*/
struct TreeUpdaterReg
: public dmlc::FunctionRegEntryBase<TreeUpdaterReg,
std::function<TreeUpdater* ()> > {
};
/*!
* \brief Macro to register tree updater.
*
* \code
* // example of registering a objective ndcg@k
* XGBOOST_REGISTER_TREE_UPDATER(ColMaker, "colmaker")
* .describe("Column based tree maker.")
* .set_body([]() {
* return new ColMaker<TStats>();
* });
* \endcode
*/
#define XGBOOST_REGISTER_TREE_UPDATER(UniqueId, Name) \
static DMLC_ATTRIBUTE_UNUSED ::xgboost::TreeUpdaterReg& \
__make_ ## TreeUpdaterReg ## _ ## UniqueId ## __ = \
::dmlc::Registry< ::xgboost::TreeUpdaterReg>::Get()->__REGISTER__(Name)
} // namespace xgboost
#endif // XGBOOST_TREE_UPDATER_H_