xgboost/src/objective/rank_obj.cc
sriramch 310fe60b35 Pairwise ranking objective implementation on gpu (#4873)
* - pairwise ranking objective implementation on gpu
   - there are couple of more algorithms (ndcg and map) for which support will be added
     as follow-up pr's
   - with no label groups defined, get gradient is 90x faster on gpu (120m instance
     mortgage dataset)
   - it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
     for the cpu implementation)

* Add JSON config to rank obj.
2019-10-22 23:40:07 -04:00

18 lines
326 B
C++

/*!
* Copyright 2019 XGBoost contributors
*/
// Dummy file to keep the CUDA conditional compile trick.
#include <dmlc/registry.h>
namespace xgboost {
namespace obj {
DMLC_REGISTRY_FILE_TAG(rank_obj);
} // namespace obj
} // namespace xgboost
#ifndef XGBOOST_USE_CUDA
#include "rank_obj.cu"
#endif // XGBOOST_USE_CUDA