* - pairwise ranking objective implementation on gpu
- there are couple of more algorithms (ndcg and map) for which support will be added
as follow-up pr's
- with no label groups defined, get gradient is 90x faster on gpu (120m instance
mortgage dataset)
- it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
for the cpu implementation)
* Add JSON config to rank obj.
18 lines
326 B
C++
18 lines
326 B
C++
/*!
|
|
* Copyright 2019 XGBoost contributors
|
|
*/
|
|
|
|
// Dummy file to keep the CUDA conditional compile trick.
|
|
#include <dmlc/registry.h>
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(rank_obj);
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|
|
|
|
#ifndef XGBOOST_USE_CUDA
|
|
#include "rank_obj.cu"
|
|
#endif // XGBOOST_USE_CUDA
|