xgboost/src/tree/model.h
2014-09-02 22:43:19 -07:00

559 lines
18 KiB
C++

#ifndef XGBOOST_TREE_MODEL_H_
#define XGBOOST_TREE_MODEL_H_
/*!
* \file model.h
* \brief model structure for tree
* \author Tianqi Chen
*/
#include <string>
#include <cstring>
#include <sstream>
#include <limits>
#include <algorithm>
#include <vector>
#include <cmath>
#include "../utils/io.h"
#include "../utils/fmap.h"
#include "../utils/utils.h"
namespace xgboost {
namespace tree {
/*!
* \brief template class of TreeModel
* \tparam TSplitCond data type to indicate split condition
* \tparam TNodeStat auxiliary statistics of node to help tree building
*/
template<typename TSplitCond, typename TNodeStat>
class TreeModel {
public:
/*! \brief data type to indicate split condition */
typedef TNodeStat NodeStat;
/*! \brief auxiliary statistics of node to help tree building */
typedef TSplitCond SplitCond;
/*! \brief parameters of the tree */
struct Param{
/*! \brief number of start root */
int num_roots;
/*! \brief total number of nodes */
int num_nodes;
/*!\brief number of deleted nodes */
int num_deleted;
/*! \brief maximum depth, this is a statistics of the tree */
int max_depth;
/*! \brief number of features used for tree construction */
int num_feature;
/*!
* \brief leaf vector size, used for vector tree
* used to store more than one dimensional information in tree
*/
int size_leaf_vector;
/*! \brief reserved part */
int reserved[31];
/*! \brief constructor */
Param(void) {
max_depth = 0;
size_leaf_vector = 0;
std::memset(reserved, 0, sizeof(reserved));
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
if (!strcmp("num_roots", name)) num_roots = atoi(val);
if (!strcmp("num_feature", name)) num_feature = atoi(val);
if (!strcmp("size_leaf_vector", name)) size_leaf_vector = atoi(val);
}
};
/*! \brief tree node */
class Node{
public:
/*! \brief index of left child */
inline int cleft(void) const {
return this->cleft_;
}
/*! \brief index of right child */
inline int cright(void) const {
return this->cright_;
}
/*! \brief index of default child when feature is missing */
inline int cdefault(void) const {
return this->default_left() ? this->cleft() : this->cright();
}
/*! \brief feature index of split condition */
inline unsigned split_index(void) const {
return sindex_ & ((1U << 31) - 1U);
}
/*! \brief when feature is unknown, whether goes to left child */
inline bool default_left(void) const {
return (sindex_ >> 31) != 0;
}
/*! \brief whether current node is leaf node */
inline bool is_leaf(void) const {
return cleft_ == -1;
}
/*! \brief get leaf value of leaf node */
inline float leaf_value(void) const {
return (this->info_).leaf_value;
}
/*! \brief get split condition of the node */
inline TSplitCond split_cond(void) const {
return (this->info_).split_cond;
}
/*! \brief get parent of the node */
inline int parent(void) const {
return parent_ & ((1U << 31) - 1);
}
/*! \brief whether current node is left child */
inline bool is_left_child(void) const {
return (parent_ & (1U << 31)) != 0;
}
/*! \brief whether current node is root */
inline bool is_root(void) const {
return parent_ == -1;
}
/*!
* \brief set the right child
* \param nide node id to right child
*/
inline void set_right_child(int nid) {
this->cright_ = nid;
}
/*!
* \brief set split condition of current node
* \param split_index feature index to split
* \param split_cond split condition
* \param default_left the default direction when feature is unknown
*/
inline void set_split(unsigned split_index, TSplitCond split_cond,
bool default_left = false) {
if (default_left) split_index |= (1U << 31);
this->sindex_ = split_index;
(this->info_).split_cond = split_cond;
}
/*!
* \brief set the leaf value of the node
* \param value leaf value
* \param right right index, could be used to store
* additional information
*/
inline void set_leaf(float value, int right = -1) {
(this->info_).leaf_value = value;
this->cleft_ = -1;
this->cright_ = right;
}
private:
friend class TreeModel<TSplitCond, TNodeStat>;
/*!
* \brief in leaf node, we have weights, in non-leaf nodes,
* we have split condition
*/
union Info{
float leaf_value;
TSplitCond split_cond;
};
// pointer to parent, highest bit is used to
// indicate whether it's a left child or not
int parent_;
// pointer to left, right
int cleft_, cright_;
// split feature index, left split or right split depends on the highest bit
unsigned sindex_;
// extra info
Info info_;
// set parent
inline void set_parent(int pidx, bool is_left_child = true) {
if (is_left_child) pidx |= (1U << 31);
this->parent_ = pidx;
}
};
protected:
// vector of nodes
std::vector<Node> nodes;
// free node space, used during training process
std::vector<int> deleted_nodes;
// stats of nodes
std::vector<TNodeStat> stats;
// leaf vector, that is used to store additional information
std::vector<bst_float> leaf_vector;
// allocate a new node,
// !!!!!! NOTE: may cause BUG here, nodes.resize
inline int AllocNode(void) {
if (param.num_deleted != 0) {
int nd = deleted_nodes.back();
deleted_nodes.pop_back();
--param.num_deleted;
return nd;
}
int nd = param.num_nodes++;
utils::Check(param.num_nodes < std::numeric_limits<int>::max(),
"number of nodes in the tree exceed 2^31");
nodes.resize(param.num_nodes);
stats.resize(param.num_nodes);
leaf_vector.resize(param.num_nodes * param.size_leaf_vector);
return nd;
}
// delete a tree node
inline void DeleteNode(int nid) {
utils::Assert(nid >= param.num_roots, "can not delete root");
deleted_nodes.push_back(nid);
nodes[nid].set_parent(-1);
++param.num_deleted;
}
public:
/*!
* \brief change a non leaf node to a leaf node, delete its children
* \param rid node id of the node
* \param new leaf value
*/
inline void ChangeToLeaf(int rid, float value) {
utils::Assert(nodes[nodes[rid].cleft() ].is_leaf(),
"can not delete a non termial child");
utils::Assert(nodes[nodes[rid].cright()].is_leaf(),
"can not delete a non termial child");
this->DeleteNode(nodes[rid].cleft());
this->DeleteNode(nodes[rid].cright());
nodes[rid].set_leaf(value);
}
/*!
* \brief collapse a non leaf node to a leaf node, delete its children
* \param rid node id of the node
* \param new leaf value
*/
inline void CollapseToLeaf(int rid, float value) {
if (nodes[rid].is_leaf()) return;
if (!nodes[nodes[rid].cleft() ].is_leaf()) {
CollapseToLeaf(nodes[rid].cleft(), 0.0f);
}
if (!nodes[nodes[rid].cright() ].is_leaf()) {
CollapseToLeaf(nodes[rid].cright(), 0.0f);
}
this->ChangeToLeaf(rid, value);
}
public:
/*! \brief model parameter */
Param param;
/*! \brief constructor */
TreeModel(void) {
param.num_nodes = 1;
param.num_roots = 1;
param.num_deleted = 0;
nodes.resize(1);
}
/*! \brief get node given nid */
inline Node &operator[](int nid) {
return nodes[nid];
}
/*! \brief get node given nid */
inline const Node &operator[](int nid) const {
return nodes[nid];
}
/*! \brief get node statistics given nid */
inline NodeStat &stat(int nid) {
return stats[nid];
}
/*! \brief get leaf vector given nid */
inline bst_float* leafvec(int nid) {
if (leaf_vector.size() == 0) return NULL;
return &leaf_vector[nid * param.size_leaf_vector];
}
/*! \brief get leaf vector given nid */
inline const bst_float* leafvec(int nid) const{
if (leaf_vector.size() == 0) return NULL;
return &leaf_vector[nid * param.size_leaf_vector];
}
/*! \brief initialize the model */
inline void InitModel(void) {
param.num_nodes = param.num_roots;
nodes.resize(param.num_nodes);
stats.resize(param.num_nodes);
leaf_vector.resize(param.num_nodes * param.size_leaf_vector, 0.0f);
for (int i = 0; i < param.num_nodes; i ++) {
nodes[i].set_leaf(0.0f);
nodes[i].set_parent(-1);
}
}
/*!
* \brief load model from stream
* \param fi input stream
*/
inline void LoadModel(utils::IStream &fi) {
utils::Check(fi.Read(&param, sizeof(Param)) > 0,
"TreeModel: wrong format");
nodes.resize(param.num_nodes); stats.resize(param.num_nodes);
utils::Check(fi.Read(&nodes[0], sizeof(Node) * nodes.size()) > 0,
"TreeModel: wrong format");
utils::Check(fi.Read(&stats[0], sizeof(NodeStat) * stats.size()) > 0,
"TreeModel: wrong format");
if (param.size_leaf_vector != 0) {
utils::Check(fi.Read(&leaf_vector), "TreeModel: wrong format");
}
// chg deleted nodes
deleted_nodes.resize(0);
for (int i = param.num_roots; i < param.num_nodes; i ++) {
if (nodes[i].is_root()) deleted_nodes.push_back(i);
}
utils::Assert(static_cast<int>(deleted_nodes.size()) == param.num_deleted,
"number of deleted nodes do not match");
}
/*!
* \brief save model to stream
* \param fo output stream
*/
inline void SaveModel(utils::IStream &fo) const {
utils::Assert(param.num_nodes == static_cast<int>(nodes.size()),
"Tree::SaveModel");
utils::Assert(param.num_nodes == static_cast<int>(stats.size()),
"Tree::SaveModel");
fo.Write(&param, sizeof(Param));
fo.Write(&nodes[0], sizeof(Node) * nodes.size());
fo.Write(&stats[0], sizeof(NodeStat) * nodes.size());
if (param.size_leaf_vector != 0) fo.Write(leaf_vector);
}
/*!
* \brief add child nodes to node
* \param nid node id to add childs
*/
inline void AddChilds(int nid) {
int pleft = this->AllocNode();
int pright = this->AllocNode();
nodes[nid].cleft_ = pleft;
nodes[nid].cright_ = pright;
nodes[nodes[nid].cleft() ].set_parent(nid, true);
nodes[nodes[nid].cright()].set_parent(nid, false);
}
/*!
* \brief only add a right child to a leaf node
* \param node id to add right child
*/
inline void AddRightChild(int nid) {
int pright = this->AllocNode();
nodes[nid].right = pright;
nodes[nodes[nid].right].set_parent(nid, false);
}
/*!
* \brief get current depth
* \param nid node id
* \param pass_rchild whether right child is not counted in depth
*/
inline int GetDepth(int nid, bool pass_rchild = false) const {
int depth = 0;
while (!nodes[nid].is_root()) {
if (!pass_rchild || nodes[nid].is_left_child()) ++depth;
nid = nodes[nid].parent();
}
return depth;
}
/*!
* \brief get maximum depth
* \param nid node id
*/
inline int MaxDepth(int nid) const {
if (nodes[nid].is_leaf()) return 0;
return std::max(MaxDepth(nodes[nid].cleft())+1,
MaxDepth(nodes[nid].cright())+1);
}
/*!
* \brief get maximum depth
*/
inline int MaxDepth(void) {
int maxd = 0;
for (int i = 0; i < param.num_roots; ++i) {
maxd = std::max(maxd, MaxDepth(i));
}
return maxd;
}
/*! \brief number of extra nodes besides the root */
inline int num_extra_nodes(void) const {
return param.num_nodes - param.num_roots - param.num_deleted;
}
/*!
* \brief dump model to text string
* \param fmap feature map of feature types
* \param with_stats whether dump out statistics as well
* \return the string of dumped model
*/
inline std::string DumpModel(const utils::FeatMap& fmap, bool with_stats) {
std::stringstream fo("");
for (int i = 0; i < param.num_roots; ++i) {
this->Dump(i, fo, fmap, 0, with_stats);
}
return fo.str();
}
private:
void Dump(int nid, std::stringstream &fo,
const utils::FeatMap& fmap, int depth, bool with_stats) {
for (int i = 0; i < depth; ++i) {
fo << '\t';
}
if (nodes[nid].is_leaf()) {
fo << nid << ":leaf=" << nodes[nid].leaf_value();
if (with_stats) {
stat(nid).Print(fo, true);
}
fo << '\n';
} else {
// right then left,
TSplitCond cond = nodes[nid].split_cond();
const unsigned split_index = nodes[nid].split_index();
if (split_index < fmap.size()) {
switch (fmap.type(split_index)) {
case utils::FeatMap::kIndicator: {
int nyes = nodes[nid].default_left() ?
nodes[nid].cright() : nodes[nid].cleft();
fo << nid << ":[" << fmap.name(split_index) << "] yes=" << nyes
<< ",no=" << nodes[nid].cdefault();
break;
}
case utils::FeatMap::kInteger: {
fo << nid << ":[" << fmap.name(split_index) << "<"
<< int(float(cond)+1.0f)
<< "] yes=" << nodes[nid].cleft()
<< ",no=" << nodes[nid].cright()
<< ",missing=" << nodes[nid].cdefault();
break;
}
case utils::FeatMap::kFloat:
case utils::FeatMap::kQuantitive: {
fo << nid << ":[" << fmap.name(split_index) << "<"<< float(cond)
<< "] yes=" << nodes[nid].cleft()
<< ",no=" << nodes[nid].cright()
<< ",missing=" << nodes[nid].cdefault();
break;
}
default: utils::Error("unknown fmap type");
}
} else {
fo << nid << ":[f" << split_index << "<"<< float(cond)
<< "] yes=" << nodes[nid].cleft()
<< ",no=" << nodes[nid].cright()
<< ",missing=" << nodes[nid].cdefault();
}
if (with_stats) {
fo << ' ';
stat(nid).Print(fo, false);
}
fo << '\n';
this->Dump(nodes[nid].cleft(), fo, fmap, depth+1, with_stats);
this->Dump(nodes[nid].cright(), fo, fmap, depth+1, with_stats);
}
}
};
/*! \brief node statistics used in regression tree */
struct RTreeNodeStat {
/*! \brief loss chg caused by current split */
float loss_chg;
/*! \brief sum of hessian values, used to measure coverage of data */
float sum_hess;
/*! \brief weight of current node */
float base_weight;
/*! \brief number of child that is leaf node known up to now */
int leaf_child_cnt;
/*! \brief print information of current stats to fo */
inline void Print(std::stringstream &fo, bool is_leaf) const {
if (!is_leaf) {
fo << "gain=" << loss_chg << ",cover=" << sum_hess;
} else {
fo << "cover=" << sum_hess;
}
}
};
/*! \brief define regression tree to be the most common tree model */
class RegTree: public TreeModel<bst_float, RTreeNodeStat>{
public:
/*!
* \brief dense feature vector that can be taken by RegTree
* to do tranverse efficiently
* and can be construct from sparse feature vector
*/
struct FVec {
/*!
* \brief a union value of value and flag
* when flag == -1, this indicate the value is missing
*/
union Entry{
float fvalue;
int flag;
};
std::vector<Entry> data;
/*! \brief intialize the vector with size vector */
inline void Init(size_t size) {
Entry e; e.flag = -1;
data.resize(size);
std::fill(data.begin(), data.end(), e);
}
/*! \brief fill the vector with sparse vector */
inline void Fill(const RowBatch::Inst &inst) {
for (bst_uint i = 0; i < inst.length; ++i) {
data[inst[i].index].fvalue = inst[i].fvalue;
}
}
/*! \brief drop the trace after fill, must be called after fill */
inline void Drop(const RowBatch::Inst &inst) {
for (bst_uint i = 0; i < inst.length; ++i) {
data[inst[i].index].flag = -1;
}
}
/*! \brief get ith value */
inline float fvalue(size_t i) const {
return data[i].fvalue;
}
/*! \brief check whether i-th entry is missing */
inline bool is_missing(size_t i) const {
return data[i].flag == -1;
}
};
/*!
* \brief get the leaf index
* \param feats dense feature vector, if the feature is missing the field is set to NaN
* \param root_gid starting root index of the instance
* \return the leaf index of the given feature
*/
inline int GetLeafIndex(const FVec&feat, unsigned root_id = 0) const {
// start from groups that belongs to current data
int pid = static_cast<int>(root_id);
// tranverse tree
while (!(*this)[ pid ].is_leaf()) {
unsigned split_index = (*this)[pid].split_index();
pid = this->GetNext(pid, feat.fvalue(split_index), feat.is_missing(split_index));
}
return pid;
}
/*!
* \brief get the prediction of regression tree, only accepts dense feature vector
* \param feats dense feature vector, if the feature is missing the field is set to NaN
* \param root_gid starting root index of the instance
* \return the leaf index of the given feature
*/
inline float Predict(const FVec &feat, unsigned root_id = 0) const {
int pid = this->GetLeafIndex(feat, root_id);
return (*this)[pid].leaf_value();
}
/*! \brief get next position of the tree given current pid */
inline int GetNext(int pid, float fvalue, bool is_unknown) const {
float split_value = (*this)[pid].split_cond();
if (is_unknown) {
return (*this)[pid].cdefault();
} else {
if (fvalue < split_value) {
return (*this)[pid].cleft();
} else {
return (*this)[pid].cright();
}
}
}
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_MODEL_H_