78 lines
2.7 KiB
C++
78 lines
2.7 KiB
C++
/*!
|
|
* Copyright 2018-2022 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/host_device_vector.h>
|
|
#include <xgboost/tree_updater.h>
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "../../../src/tree/param.h"
|
|
#include "../../../src/tree/split_evaluator.h"
|
|
#include "../../../src/tree/updater_quantile_hist.h"
|
|
#include "../helpers.h"
|
|
#include "test_partitioner.h"
|
|
#include "xgboost/data.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
TEST(QuantileHist, Partitioner) {
|
|
size_t n_samples = 1024, n_features = 1, base_rowid = 0;
|
|
GenericParameter ctx;
|
|
ctx.InitAllowUnknown(Args{});
|
|
|
|
HistRowPartitioner partitioner{n_samples, base_rowid, ctx.Threads()};
|
|
ASSERT_EQ(partitioner.base_rowid, base_rowid);
|
|
ASSERT_EQ(partitioner.Size(), 1);
|
|
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
|
|
|
|
auto Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
|
|
std::vector<CPUExpandEntry> candidates{{0, 0, 0.4}};
|
|
|
|
auto cuts = common::SketchOnDMatrix(Xy.get(), 64, ctx.Threads());
|
|
|
|
for (auto const& page : Xy->GetBatches<SparsePage>()) {
|
|
GHistIndexMatrix gmat(page, {}, cuts, 64, true, 0.5, ctx.Threads());
|
|
bst_feature_t const split_ind = 0;
|
|
common::ColumnMatrix column_indices;
|
|
column_indices.InitFromSparse(page, gmat, 0.5, ctx.Threads());
|
|
{
|
|
auto min_value = gmat.cut.MinValues()[split_ind];
|
|
RegTree tree;
|
|
HistRowPartitioner partitioner{n_samples, base_rowid, ctx.Threads()};
|
|
GetSplit(&tree, min_value, &candidates);
|
|
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
|
|
ASSERT_EQ(partitioner.Size(), 3);
|
|
ASSERT_EQ(partitioner[1].Size(), 0);
|
|
ASSERT_EQ(partitioner[2].Size(), n_samples);
|
|
}
|
|
{
|
|
HistRowPartitioner partitioner{n_samples, base_rowid, ctx.Threads()};
|
|
auto ptr = gmat.cut.Ptrs()[split_ind + 1];
|
|
float split_value = gmat.cut.Values().at(ptr / 2);
|
|
RegTree tree;
|
|
GetSplit(&tree, split_value, &candidates);
|
|
auto left_nidx = tree[RegTree::kRoot].LeftChild();
|
|
partitioner.UpdatePosition<false, true>(&ctx, gmat, column_indices, candidates, &tree);
|
|
|
|
auto elem = partitioner[left_nidx];
|
|
ASSERT_LT(elem.Size(), n_samples);
|
|
ASSERT_GT(elem.Size(), 1);
|
|
for (auto it = elem.begin; it != elem.end; ++it) {
|
|
auto value = gmat.cut.Values().at(gmat.index[*it]);
|
|
ASSERT_LE(value, split_value);
|
|
}
|
|
auto right_nidx = tree[RegTree::kRoot].RightChild();
|
|
elem = partitioner[right_nidx];
|
|
for (auto it = elem.begin; it != elem.end; ++it) {
|
|
auto value = gmat.cut.Values().at(gmat.index[*it]);
|
|
ASSERT_GT(value, split_value) << *it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace tree
|
|
} // namespace xgboost
|