xgboost/doc/jvm/java_intro.rst
Philip Hyunsu Cho 05b089405d
Doc modernization (#3474)
* Change doc build to reST exclusively

* Rewrite Intro doc in reST; create toctree

* Update parameter and contribute

* Convert tutorials to reST

* Convert Python tutorials to reST

* Convert CLI and Julia docs to reST

* Enable markdown for R vignettes

* Done migrating to reST

* Add guzzle_sphinx_theme to requirements

* Add breathe to requirements

* Fix search bar

* Add link to user forum
2018-07-19 14:22:16 -07:00

178 lines
5.0 KiB
ReStructuredText

##################
XGBoost4J Java API
##################
This tutorial introduces Java API for XGBoost.
**************
Data Interface
**************
Like the XGBoost python module, XGBoost4J uses ``DMatrix`` to handle data,
libsvm txt format file, sparse matrix in CSR/CSC format, and dense matrix is
supported.
* The first step is to import ``DMatrix``:
.. code-block:: java
import org.dmlc.xgboost4j.DMatrix;
* Use ``DMatrix`` constructor to load data from a libsvm text format file:
.. code-block:: java
DMatrix dmat = new DMatrix("train.svm.txt");
* Pass arrays to ``DMatrix`` constructor to load from sparse matrix.
Suppose we have a sparse matrix
.. code-block:: none
1 0 2 0
4 0 0 3
3 1 2 0
We can express the sparse matrix in `Compressed Sparse Row (CSR) <https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)>`_ format:
.. code-block:: java
long[] rowHeaders = new long[] {0,2,4,7};
float[] data = new float[] {1f,2f,4f,3f,3f,1f,2f};
int[] colIndex = new int[] {0,2,0,3,0,1,2};
DMatrix dmat = new DMatrix(rowHeaders, colIndex, data, DMatrix.SparseType.CSR);
... or in `Compressed Sparse Column (CSC) <https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_(CSC_or_CCS)>`_ format:
.. code-block:: java
long[] colHeaders = new long[] {0,3,4,6,7};
float[] data = new float[] {1f,4f,3f,1f,2f,2f,3f};
int[] rowIndex = new int[] {0,1,2,2,0,2,1};
DMatrix dmat = new DMatrix(colHeaders, rowIndex, data, DMatrix.SparseType.CSC);
* You may also load your data from a dense matrix. Let's assume we have a matrix of form
.. code-block:: none
1 2
3 4
5 6
Using `row-major layout <https://en.wikipedia.org/wiki/Row-_and_column-major_order>`_, we specify the dense matrix as follows:
.. code-block:: java
float[] data = new float[] {1f,2f,3f,4f,5f,6f};
int nrow = 3;
int ncol = 2;
float missing = 0.0f;
DMatrix dmat = new Matrix(data, nrow, ncol, missing);
* To set weight:
.. code-block:: java
float[] weights = new float[] {1f,2f,1f};
dmat.setWeight(weights);
******************
Setting Parameters
******************
* In XGBoost4J any ``Iterable<Entry<String, Object>>`` object could be used as parameters.
* To set parameters, for non-multiple value params, you can simply use entrySet of an Map:
.. code-block:: java
Map<String, Object> paramMap = new HashMap<>() {
{
put("eta", 1.0);
put("max_depth", 2);
put("silent", 1);
put("objective", "binary:logistic");
put("eval_metric", "logloss");
}
};
Iterable<Entry<String, Object>> params = paramMap.entrySet();
* for the situation that multiple values with same param key, List<Entry<String, Object>> would be a good choice, e.g. :
.. code-block:: java
List<Entry<String, Object>> params = new ArrayList<Entry<String, Object>>() {
{
add(new SimpleEntry<String, Object>("eta", 1.0));
add(new SimpleEntry<String, Object>("max_depth", 2.0));
add(new SimpleEntry<String, Object>("silent", 1));
add(new SimpleEntry<String, Object>("objective", "binary:logistic"));
}
};
**************
Training Model
**************
With parameters and data, you are able to train a booster model.
* Import ``Trainer`` and ``Booster``:
.. code-block:: java
import org.dmlc.xgboost4j.Booster;
import org.dmlc.xgboost4j.util.Trainer;
* Training
.. code-block:: java
DMatrix trainMat = new DMatrix("train.svm.txt");
DMatrix validMat = new DMatrix("valid.svm.txt");
//specify a watchList to see the performance
//any Iterable<Entry<String, DMatrix>> object could be used as watchList
List<Entry<String, DMatrix>> watchs = new ArrayList<>();
watchs.add(new SimpleEntry<>("train", trainMat));
watchs.add(new SimpleEntry<>("test", testMat));
int round = 2;
Booster booster = Trainer.train(params, trainMat, round, watchs, null, null);
* Saving model
After training, you can save model and dump it out.
.. code-block:: java
booster.saveModel("model.bin");
* Dump Model and Feature Map
.. code-block:: java
booster.dumpModel("modelInfo.txt", false)
//dump with featureMap
booster.dumpModel("modelInfo.txt", "featureMap.txt", false)
* Load a model
.. code-block:: java
Params param = new Params() {
{
put("silent", 1);
put("nthread", 6);
}
};
Booster booster = new Booster(param, "model.bin");
**********
Prediction
**********
After training and loading a model, you can use it to make prediction for other data. The result will be a two-dimension float array ``(nsample, nclass)``; for ``predictLeaf()``, the result would be of shape ``(nsample, nclass*ntrees)``.
.. code-block:: java
DMatrix dtest = new DMatrix("test.svm.txt");
//predict
float[][] predicts = booster.predict(dtest);
//predict leaf
float[][] leafPredicts = booster.predict(dtest, 0, true);