* a few tweaks to speed up data generation * del variable to save memory * switch to random numpy arrays
87 lines
3.0 KiB
Python
87 lines
3.0 KiB
Python
"""Run benchmark on the tree booster."""
|
|
|
|
import argparse
|
|
import ast
|
|
import time
|
|
|
|
import numpy as np
|
|
import xgboost as xgb
|
|
|
|
RNG = np.random.RandomState(1994)
|
|
|
|
|
|
def run_benchmark(args):
|
|
"""Runs the benchmark."""
|
|
try:
|
|
dtest = xgb.DMatrix('dtest.dm')
|
|
dtrain = xgb.DMatrix('dtrain.dm')
|
|
|
|
if not (dtest.num_col() == args.columns
|
|
and dtrain.num_col() == args.columns):
|
|
raise ValueError("Wrong cols")
|
|
if not (dtest.num_row() == args.rows * args.test_size
|
|
and dtrain.num_row() == args.rows * (1 - args.test_size)):
|
|
raise ValueError("Wrong rows")
|
|
except xgb.core.XGBoostError:
|
|
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
|
|
print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size))
|
|
tmp = time.time()
|
|
X = RNG.rand(args.rows, args.columns)
|
|
y = RNG.randint(0, 2, args.rows)
|
|
if 0.0 < args.sparsity < 1.0:
|
|
X = np.array([[np.nan if RNG.uniform(0, 1) < args.sparsity else x for x in x_row]
|
|
for x_row in X])
|
|
|
|
train_rows = int(args.rows * (1.0 - args.test_size))
|
|
test_rows = int(args.rows * args.test_size)
|
|
X_train = X[:train_rows, :]
|
|
X_test = X[-test_rows:, :]
|
|
y_train = y[:train_rows]
|
|
y_test = y[-test_rows:]
|
|
print("Generate Time: %s seconds" % (str(time.time() - tmp)))
|
|
del X, y
|
|
|
|
tmp = time.time()
|
|
print("DMatrix Start")
|
|
dtrain = xgb.DMatrix(X_train, y_train, nthread=-1)
|
|
dtest = xgb.DMatrix(X_test, y_test, nthread=-1)
|
|
print("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
|
|
del X_train, y_train, X_test, y_test
|
|
|
|
dtest.save_binary('dtest.dm')
|
|
dtrain.save_binary('dtrain.dm')
|
|
|
|
param = {'objective': 'binary:logistic'}
|
|
if args.params != '':
|
|
param.update(ast.literal_eval(args.params))
|
|
|
|
param['tree_method'] = args.tree_method
|
|
print("Training with '%s'" % param['tree_method'])
|
|
tmp = time.time()
|
|
xgb.train(param, dtrain, args.iterations, evals=[(dtest, "test")])
|
|
print("Train Time: %s seconds" % (str(time.time() - tmp)))
|
|
|
|
|
|
def main():
|
|
"""The main function.
|
|
|
|
Defines and parses command line arguments and calls the benchmark.
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--tree_method', default='gpu_hist')
|
|
parser.add_argument('--sparsity', type=float, default=0.0)
|
|
parser.add_argument('--rows', type=int, default=1000000)
|
|
parser.add_argument('--columns', type=int, default=50)
|
|
parser.add_argument('--iterations', type=int, default=500)
|
|
parser.add_argument('--test_size', type=float, default=0.25)
|
|
parser.add_argument('--params', default='',
|
|
help='Provide additional parameters as a Python dict string, e.g. --params '
|
|
'\"{\'max_depth\':2}\"')
|
|
args = parser.parse_args()
|
|
|
|
run_benchmark(args)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|