xgboost/src/common/column_matrix.h
Jiaming Yuan 8dd96013f1
Split up column matrix initialization. (#8060)
* Split up column matrix initialization.

This PR splits the column matrix initialization into 2 steps, the first one initializes
the storage while the second one does the transpose. By doing so, we can reuse the code
for Quantile DMatrix.
2022-07-14 10:34:47 +08:00

366 lines
13 KiB
C++

/*!
* Copyright 2017-2022 by Contributors
* \file column_matrix.h
* \brief Utility for fast column-wise access
* \author Philip Cho
*/
#ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_
#define XGBOOST_COMMON_COLUMN_MATRIX_H_
#include <dmlc/endian.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <utility> // std::move
#include <vector>
#include "../data/adapter.h"
#include "../data/gradient_index.h"
#include "hist_util.h"
namespace xgboost {
namespace common {
class ColumnMatrix;
/*! \brief column type */
enum ColumnType : uint8_t { kDenseColumn, kSparseColumn };
/*! \brief a column storage, to be used with ApplySplit. Note that each
bin id is stored as index[i] + index_base.
Different types of column index for each column allow
to reduce the memory usage. */
template <typename BinIdxType>
class Column {
public:
static constexpr bst_bin_t kMissingId = -1;
Column(common::Span<const BinIdxType> index, bst_bin_t least_bin_idx)
: index_(index), index_base_(least_bin_idx) {}
virtual ~Column() = default;
bst_bin_t GetGlobalBinIdx(size_t idx) const {
return index_base_ + static_cast<bst_bin_t>(index_[idx]);
}
/* returns number of elements in column */
size_t Size() const { return index_.size(); }
private:
/* bin indexes in range [0, max_bins - 1] */
common::Span<const BinIdxType> index_;
/* bin index offset for specific feature */
bst_bin_t const index_base_;
};
template <typename BinIdxT>
class SparseColumnIter : public Column<BinIdxT> {
private:
using Base = Column<BinIdxT>;
/* indexes of rows */
common::Span<const size_t> row_ind_;
size_t idx_;
size_t const* RowIndices() const { return row_ind_.data(); }
public:
SparseColumnIter(common::Span<const BinIdxT> index, bst_bin_t least_bin_idx,
common::Span<const size_t> row_ind, bst_row_t first_row_idx)
: Base{index, least_bin_idx}, row_ind_(row_ind) {
// first_row_id is the first row in the leaf partition
const size_t* row_data = RowIndices();
const size_t column_size = this->Size();
// search first nonzero row with index >= rid_span.front()
// note that the input row partition is always sorted.
const size_t* p = std::lower_bound(row_data, row_data + column_size, first_row_idx);
// column_size if all missing
idx_ = p - row_data;
}
SparseColumnIter(SparseColumnIter const&) = delete;
SparseColumnIter(SparseColumnIter&&) = default;
size_t GetRowIdx(size_t idx) const { return RowIndices()[idx]; }
bst_bin_t operator[](size_t rid) {
const size_t column_size = this->Size();
if (!((idx_) < column_size)) {
return this->kMissingId;
}
// find next non-missing row
while ((idx_) < column_size && GetRowIdx(idx_) < rid) {
++(idx_);
}
if (((idx_) < column_size) && GetRowIdx(idx_) == rid) {
// non-missing row found
return this->GetGlobalBinIdx(idx_);
} else {
// at the end of column
return this->kMissingId;
}
}
};
template <typename BinIdxT, bool any_missing>
class DenseColumnIter : public Column<BinIdxT> {
private:
using Base = Column<BinIdxT>;
/* flags for missing values in dense columns */
std::vector<bool> const& missing_flags_;
size_t feature_offset_;
public:
explicit DenseColumnIter(common::Span<const BinIdxT> index, bst_bin_t index_base,
std::vector<bool> const& missing_flags, size_t feature_offset)
: Base{index, index_base}, missing_flags_{missing_flags}, feature_offset_{feature_offset} {}
DenseColumnIter(DenseColumnIter const&) = delete;
DenseColumnIter(DenseColumnIter&&) = default;
bool IsMissing(size_t ridx) const { return missing_flags_[feature_offset_ + ridx]; }
bst_bin_t operator[](size_t ridx) const {
if (any_missing) {
return IsMissing(ridx) ? this->kMissingId : this->GetGlobalBinIdx(ridx);
} else {
return this->GetGlobalBinIdx(ridx);
}
}
};
/**
* \brief Column major matrix for gradient index. This matrix contains both dense column
* and sparse column, the type of the column is controlled by sparse threshold. When the
* number of missing values in a column is below the threshold it's classified as dense
* column.
*/
class ColumnMatrix {
void InitStorage(GHistIndexMatrix const& gmat, double sparse_threshold);
public:
// get number of features
bst_feature_t GetNumFeature() const { return static_cast<bst_feature_t>(type_.size()); }
ColumnMatrix() = default;
ColumnMatrix(GHistIndexMatrix const& gmat, double sparse_threshold) {
this->InitStorage(gmat, sparse_threshold);
}
template <typename Batch>
void PushBatch(int32_t n_threads, Batch const& batch, float missing, GHistIndexMatrix const& gmat,
size_t base_rowid) {
// pre-fill index_ for dense columns
auto n_features = gmat.Features();
if (!any_missing_) {
missing_flags_.resize(feature_offsets_[n_features], false);
// row index is compressed, we need to dispatch it.
DispatchBinType(gmat.index.GetBinTypeSize(), [&, size = batch.Size(), n_features = n_features,
n_threads = n_threads](auto t) {
using RowBinIdxT = decltype(t);
SetIndexNoMissing(base_rowid, gmat.index.data<RowBinIdxT>(), size, n_features, n_threads);
});
} else {
missing_flags_.resize(feature_offsets_[n_features], true);
SetIndexMixedColumns(base_rowid, batch, gmat, n_features, missing);
}
}
// construct column matrix from GHistIndexMatrix
void Init(SparsePage const& page, const GHistIndexMatrix& gmat, double sparse_threshold,
int32_t n_threads) {
auto batch = data::SparsePageAdapterBatch{page.GetView()};
this->InitStorage(gmat, sparse_threshold);
// ignore base row id here as we always has one column matrix for each sparse page.
this->PushBatch(n_threads, batch, std::numeric_limits<float>::quiet_NaN(), gmat, 0);
}
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
void SetTypeSize(size_t max_bin_per_feat) {
if ((max_bin_per_feat - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max())) {
bins_type_size_ = kUint8BinsTypeSize;
} else if ((max_bin_per_feat - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
bins_type_size_ = kUint16BinsTypeSize;
} else {
bins_type_size_ = kUint32BinsTypeSize;
}
}
template <typename BinIdxType>
auto SparseColumn(bst_feature_t fidx, bst_row_t first_row_idx) const {
const size_t feature_offset = feature_offsets_[fidx]; // to get right place for certain feature
const size_t column_size = feature_offsets_[fidx + 1] - feature_offset;
common::Span<const BinIdxType> bin_index = {
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
column_size};
return SparseColumnIter<BinIdxType>(bin_index, index_base_[fidx],
{&row_ind_[feature_offset], column_size}, first_row_idx);
}
template <typename BinIdxType, bool any_missing>
auto DenseColumn(bst_feature_t fidx) const {
const size_t feature_offset = feature_offsets_[fidx]; // to get right place for certain feature
const size_t column_size = feature_offsets_[fidx + 1] - feature_offset;
common::Span<const BinIdxType> bin_index = {
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
column_size};
return std::move(DenseColumnIter<BinIdxType, any_missing>{
bin_index, static_cast<bst_bin_t>(index_base_[fidx]), missing_flags_, feature_offset});
}
// all columns are dense column and has no missing value
// FIXME(jiamingy): We don't need a column matrix if there's no missing value.
template <typename RowBinIdxT>
void SetIndexNoMissing(bst_row_t base_rowid, RowBinIdxT const* row_index, const size_t n_samples,
const size_t n_features, int32_t n_threads) {
DispatchBinType(bins_type_size_, [&](auto t) {
using ColumnBinT = decltype(t);
auto column_index = Span<ColumnBinT>{reinterpret_cast<ColumnBinT*>(index_.data()),
index_.size() / sizeof(ColumnBinT)};
ParallelFor(n_samples, n_threads, [&](auto rid) {
rid += base_rowid;
const size_t ibegin = rid * n_features;
const size_t iend = (rid + 1) * n_features;
for (size_t i = ibegin, j = 0; i < iend; ++i, ++j) {
const size_t idx = feature_offsets_[j];
// No need to add offset, as row index is compressed and stores the local index
column_index[idx + rid] = row_index[i];
}
});
});
}
/**
* \brief Set column index for both dense and sparse columns
*/
template <typename Batch>
void SetIndexMixedColumns(size_t base_rowid, Batch const& batch, const GHistIndexMatrix& gmat,
size_t n_features, float missing) {
auto const* row_index = gmat.index.data<uint32_t>() + gmat.row_ptr[base_rowid];
auto is_valid = data::IsValidFunctor {missing};
DispatchBinType(bins_type_size_, [&](auto t) {
using ColumnBinT = decltype(t);
ColumnBinT* local_index = reinterpret_cast<ColumnBinT*>(index_.data());
num_nonzeros_.resize(n_features, 0);
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
if (type_[fid] == kDenseColumn) {
ColumnBinT* begin = &local_index[feature_offsets_[fid]];
begin[rid] = bin_id - index_base_[fid];
// not thread-safe with bool vector. FIXME(jiamingy): We can directly assign
// kMissingId to the index to avoid missing flags.
missing_flags_[feature_offsets_[fid] + rid] = false;
} else {
ColumnBinT* begin = &local_index[feature_offsets_[fid]];
begin[num_nonzeros_[fid]] = bin_id - index_base_[fid];
row_ind_[feature_offsets_[fid] + num_nonzeros_[fid]] = rid;
++num_nonzeros_[fid];
}
};
size_t const batch_size = batch.Size();
size_t k{0};
for (size_t rid = 0; rid < batch_size; ++rid) {
auto line = batch.GetLine(rid);
for (size_t i = 0; i < line.Size(); ++i) {
auto coo = line.GetElement(i);
if (is_valid(coo)) {
auto fid = coo.column_idx;
const uint32_t bin_id = row_index[k];
get_bin_idx(bin_id, rid + base_rowid, fid);
++k;
}
}
}
});
}
BinTypeSize GetTypeSize() const { return bins_type_size_; }
auto GetColumnType(bst_feature_t fidx) const { return type_[fidx]; }
// And this returns part of state
bool AnyMissing() const { return any_missing_; }
// IO procedures for external memory.
bool Read(dmlc::SeekStream* fi, uint32_t const* index_base) {
fi->Read(&index_);
#if !DMLC_LITTLE_ENDIAN
// s390x
std::vector<std::underlying_type<ColumnType>::type> int_types;
fi->Read(&int_types);
type_.resize(int_types.size());
std::transform(
int_types.begin(), int_types.end(), type_.begin(),
[](std::underlying_type<ColumnType>::type i) { return static_cast<ColumnType>(i); });
#else
fi->Read(&type_);
#endif // !DMLC_LITTLE_ENDIAN
fi->Read(&row_ind_);
fi->Read(&feature_offsets_);
index_base_ = index_base;
#if !DMLC_LITTLE_ENDIAN
std::underlying_type<BinTypeSize>::type v;
fi->Read(&v);
bins_type_size_ = static_cast<BinTypeSize>(v);
#else
fi->Read(&bins_type_size_);
#endif
fi->Read(&any_missing_);
return true;
}
size_t Write(dmlc::Stream* fo) const {
size_t bytes{0};
auto write_vec = [&](auto const& vec) {
fo->Write(vec);
bytes += vec.size() * sizeof(typename std::remove_reference_t<decltype(vec)>::value_type) +
sizeof(uint64_t);
};
write_vec(index_);
#if !DMLC_LITTLE_ENDIAN
// s390x
std::vector<std::underlying_type<ColumnType>::type> int_types(type_.size());
std::transform(type_.begin(), type_.end(), int_types.begin(), [](ColumnType t) {
return static_cast<std::underlying_type<ColumnType>::type>(t);
});
write_vec(int_types);
#else
write_vec(type_);
#endif // !DMLC_LITTLE_ENDIAN
write_vec(row_ind_);
write_vec(feature_offsets_);
#if !DMLC_LITTLE_ENDIAN
auto v = static_cast<std::underlying_type<BinTypeSize>::type>(bins_type_size_);
fo->Write(v);
#else
fo->Write(bins_type_size_);
#endif // DMLC_LITTLE_ENDIAN
bytes += sizeof(bins_type_size_);
fo->Write(any_missing_);
bytes += sizeof(any_missing_);
return bytes;
}
private:
std::vector<uint8_t> index_;
std::vector<ColumnType> type_;
/* indptr of a CSC matrix. */
std::vector<size_t> row_ind_;
/* indicate where each column's index and row_ind is stored. */
std::vector<size_t> feature_offsets_;
/* The number of nnz of each column. */
std::vector<size_t> num_nonzeros_;
// index_base_[fid]: least bin id for feature fid
uint32_t const* index_base_;
std::vector<bool> missing_flags_;
BinTypeSize bins_type_size_;
bool any_missing_;
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_COLUMN_MATRIX_H_