xgboost/src/common/device_helpers.cuh
Jiaming Yuan 8d7fe262d9
[EM] Enable access to the number of batches. (#10691)
- Expose `NumBatches` in `DMatrix`.
- Small cleanup for removing legacy CUDA stream and ~force CUDA context initialization~.
- Purge old external memory data generation code.
2024-08-17 02:59:45 +08:00

918 lines
31 KiB
Plaintext

/**
* Copyright 2017-2024, XGBoost contributors
*/
#pragma once
#include <thrust/binary_search.h> // thrust::upper_bound
#include <thrust/device_ptr.h> // for device_ptr
#include <thrust/device_vector.h> // for device_vector
#include <thrust/execution_policy.h> // thrust::seq
#include <thrust/iterator/discard_iterator.h> // for discard_iterator
#include <thrust/iterator/transform_output_iterator.h> // make_transform_output_iterator
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#include <thrust/unique.h>
#include <algorithm>
#include <cstddef> // for size_t
#include <cub/cub.cuh>
#include <cub/util_type.cuh> // for UnitWord
#include <tuple>
#include <vector>
#include "common.h"
#include "device_vector.cuh"
#include "xgboost/host_device_vector.h"
#include "xgboost/logging.h"
#include "xgboost/span.h"
#if defined(XGBOOST_USE_RMM)
#include <rmm/exec_policy.hpp>
#endif // defined(XGBOOST_USE_RMM)
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 600 || defined(__clang__)
#else // In device code and CUDA < 600
__device__ __forceinline__ double atomicAdd(double* address, double val) { // NOLINT
unsigned long long int* address_as_ull =
(unsigned long long int*)address; // NOLINT
unsigned long long int old = *address_as_ull, assumed; // NOLINT
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN !=
// NaN)
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
namespace dh {
// FIXME(jiamingy): Remove this once we get rid of cub submodule.
constexpr bool BuildWithCUDACub() {
#if defined(THRUST_IGNORE_CUB_VERSION_CHECK) && THRUST_IGNORE_CUB_VERSION_CHECK == 1
return false;
#else
return true;
#endif // defined(THRUST_IGNORE_CUB_VERSION_CHECK) && THRUST_IGNORE_CUB_VERSION_CHECK == 1
}
namespace detail {
template <size_t size>
struct AtomicDispatcher;
template <>
struct AtomicDispatcher<sizeof(uint32_t)> {
using Type = unsigned int; // NOLINT
static_assert(sizeof(Type) == sizeof(uint32_t), "Unsigned should be of size 32 bits.");
};
template <>
struct AtomicDispatcher<sizeof(uint64_t)> {
using Type = unsigned long long; // NOLINT
static_assert(sizeof(Type) == sizeof(uint64_t), "Unsigned long long should be of size 64 bits.");
};
} // namespace detail
} // namespace dh
// atomicAdd is not defined for size_t.
template <typename T = size_t,
std::enable_if_t<std::is_same<size_t, T>::value &&
!std::is_same<size_t, unsigned long long>::value> * = // NOLINT
nullptr>
XGBOOST_DEV_INLINE T atomicAdd(T *addr, T v) { // NOLINT
using Type = typename dh::detail::AtomicDispatcher<sizeof(T)>::Type;
Type ret = ::atomicAdd(reinterpret_cast<Type *>(addr), static_cast<Type>(v));
return static_cast<T>(ret);
}
namespace dh {
inline int32_t CudaGetPointerDevice(void const *ptr) {
int32_t device = -1;
cudaPointerAttributes attr;
dh::safe_cuda(cudaPointerGetAttributes(&attr, ptr));
device = attr.device;
return device;
}
inline size_t AvailableMemory(int device_idx) {
size_t device_free = 0;
size_t device_total = 0;
safe_cuda(cudaSetDevice(device_idx));
dh::safe_cuda(cudaMemGetInfo(&device_free, &device_total));
return device_free;
}
inline int32_t CurrentDevice() {
int32_t device = 0;
safe_cuda(cudaGetDevice(&device));
return device;
}
// Helper function to get a device from a potentially CPU context.
inline auto GetDevice(xgboost::Context const *ctx) {
auto d = (ctx->IsCUDA()) ? ctx->Device() : xgboost::DeviceOrd::CUDA(dh::CurrentDevice());
CHECK(!d.IsCPU());
return d;
}
inline size_t TotalMemory(int device_idx) {
size_t device_free = 0;
size_t device_total = 0;
safe_cuda(cudaSetDevice(device_idx));
dh::safe_cuda(cudaMemGetInfo(&device_free, &device_total));
return device_total;
}
/**
* \fn inline int MaxSharedMemory(int device_idx)
*
* \brief Maximum shared memory per block on this device.
*
* \param device_idx Zero-based index of the device.
*/
inline size_t MaxSharedMemory(int device_idx) {
int max_shared_memory = 0;
dh::safe_cuda(cudaDeviceGetAttribute
(&max_shared_memory, cudaDevAttrMaxSharedMemoryPerBlock,
device_idx));
return static_cast<std::size_t>(max_shared_memory);
}
/**
* \fn inline int MaxSharedMemoryOptin(int device_idx)
*
* \brief Maximum dynamic shared memory per thread block on this device
that can be opted into when using cudaFuncSetAttribute().
*
* \param device_idx Zero-based index of the device.
*/
inline size_t MaxSharedMemoryOptin(int device_idx) {
int max_shared_memory = 0;
dh::safe_cuda(cudaDeviceGetAttribute
(&max_shared_memory, cudaDevAttrMaxSharedMemoryPerBlockOptin,
device_idx));
return static_cast<std::size_t>(max_shared_memory);
}
XGBOOST_DEV_INLINE void AtomicOrByte(unsigned int *__restrict__ buffer,
size_t ibyte, unsigned char b) {
atomicOr(&buffer[ibyte / sizeof(unsigned int)],
static_cast<unsigned int>(b)
<< (ibyte % (sizeof(unsigned int)) * 8));
}
template <typename T>
__device__ xgboost::common::Range GridStrideRange(T begin, T end) {
begin += blockDim.x * blockIdx.x + threadIdx.x;
xgboost::common::Range r(begin, end);
r.Step(gridDim.x * blockDim.x);
return r;
}
template <typename T>
__device__ xgboost::common::Range BlockStrideRange(T begin, T end) {
begin += threadIdx.x;
xgboost::common::Range r(begin, end);
r.Step(blockDim.x);
return r;
}
// Threadblock iterates over range, filling with value. Requires all threads in
// block to be active.
template <typename IterT, typename ValueT>
__device__ void BlockFill(IterT begin, size_t n, ValueT value) {
for (auto i : BlockStrideRange(static_cast<size_t>(0), n)) {
begin[i] = value;
}
}
/*
* Kernel launcher
*/
template <typename L>
__global__ void LaunchNKernel(size_t begin, size_t end, L lambda) {
for (auto i : GridStrideRange(begin, end)) {
lambda(i);
}
}
template <typename L>
__global__ void LaunchNKernel(int device_idx, size_t begin, size_t end,
L lambda) {
for (auto i : GridStrideRange(begin, end)) {
lambda(i, device_idx);
}
}
/* \brief A wrapper around kernel launching syntax, used to guard against empty input.
*
* - nvcc fails to deduce template argument when kernel is a template accepting __device__
* function as argument. Hence functions like `LaunchN` cannot use this wrapper.
*
* - With c++ initialization list `{}` syntax, you are forced to comply with the CUDA type
* specification.
*/
class LaunchKernel {
size_t shmem_size_;
cudaStream_t stream_;
dim3 grids_;
dim3 blocks_;
public:
LaunchKernel(uint32_t _grids, uint32_t _blk, size_t _shmem=0, cudaStream_t _s=nullptr) :
grids_{_grids, 1, 1}, blocks_{_blk, 1, 1}, shmem_size_{_shmem}, stream_{_s} {}
LaunchKernel(dim3 _grids, dim3 _blk, size_t _shmem=0, cudaStream_t _s=nullptr) :
grids_{_grids}, blocks_{_blk}, shmem_size_{_shmem}, stream_{_s} {}
template <typename K, typename... Args>
void operator()(K kernel, Args... args) {
if (XGBOOST_EXPECT(grids_.x * grids_.y * grids_.z == 0, false)) {
LOG(DEBUG) << "Skipping empty CUDA kernel.";
return;
}
kernel<<<grids_, blocks_, shmem_size_, stream_>>>(args...); // NOLINT
}
};
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void LaunchN(size_t n, cudaStream_t stream, L lambda) {
if (n == 0) {
return;
}
const int GRID_SIZE =
static_cast<int>(xgboost::common::DivRoundUp(n, ITEMS_PER_THREAD * BLOCK_THREADS));
LaunchNKernel<<<GRID_SIZE, BLOCK_THREADS, 0, stream>>>( // NOLINT
static_cast<size_t>(0), n, lambda);
}
// Default stream version
template <int ITEMS_PER_THREAD = 8, int BLOCK_THREADS = 256, typename L>
inline void LaunchN(size_t n, L lambda) {
LaunchN<ITEMS_PER_THREAD, BLOCK_THREADS>(n, nullptr, lambda);
}
template <typename Container>
void Iota(Container array, cudaStream_t stream) {
LaunchN(array.size(), stream, [=] __device__(size_t i) { array[i] = i; });
}
// dh::DebugSyncDevice(__FILE__, __LINE__);
inline void DebugSyncDevice(char const *file = __builtin_FILE(), int32_t line = __builtin_LINE()) {
{
auto err = cudaDeviceSynchronize();
ThrowOnCudaError(err, file, line);
}
{
auto err = cudaGetLastError();
ThrowOnCudaError(err, file, line);
}
}
// Faster to instantiate than caching_device_vector and invokes no synchronisation
// Use this where vector functionality (e.g. resize) is not required
template <typename T>
class TemporaryArray {
public:
using AllocT = XGBCachingDeviceAllocator<T>;
using value_type = T; // NOLINT
explicit TemporaryArray(size_t n) : size_(n) { ptr_ = AllocT().allocate(n); }
TemporaryArray(size_t n, T val) : size_(n) {
ptr_ = AllocT().allocate(n);
this->fill(val);
}
~TemporaryArray() { AllocT().deallocate(ptr_, this->size()); }
void fill(T val) // NOLINT
{
int device = 0;
dh::safe_cuda(cudaGetDevice(&device));
auto d_data = ptr_.get();
LaunchN(this->size(), [=] __device__(size_t idx) { d_data[idx] = val; });
}
thrust::device_ptr<T> data() { return ptr_; } // NOLINT
size_t size() { return size_; } // NOLINT
private:
thrust::device_ptr<T> ptr_;
size_t size_;
};
/**
* \brief A double buffer, useful for algorithms like sort.
*/
template <typename T>
class DoubleBuffer {
public:
cub::DoubleBuffer<T> buff;
xgboost::common::Span<T> a, b;
DoubleBuffer() = default;
template <typename VectorT>
DoubleBuffer(VectorT *v1, VectorT *v2) {
a = xgboost::common::Span<T>(v1->data().get(), v1->size());
b = xgboost::common::Span<T>(v2->data().get(), v2->size());
buff = cub::DoubleBuffer<T>(a.data(), b.data());
}
size_t Size() const {
CHECK_EQ(a.size(), b.size());
return a.size();
}
cub::DoubleBuffer<T> &CubBuffer() { return buff; }
T *Current() { return buff.Current(); }
xgboost::common::Span<T> CurrentSpan() {
return xgboost::common::Span<T>{buff.Current(), Size()};
}
T *Other() { return buff.Alternate(); }
};
template <typename T>
xgboost::common::Span<T> LazyResize(xgboost::Context const *ctx,
xgboost::HostDeviceVector<T> *buffer, std::size_t n) {
buffer->SetDevice(ctx->Device());
if (buffer->Size() < n) {
buffer->Resize(n);
}
return buffer->DeviceSpan().subspan(0, n);
}
/**
* \brief Copies device span to std::vector.
*
* \tparam T Generic type parameter.
* \param [in,out] dst Copy destination.
* \param src Copy source. Must be device memory.
*/
template <typename T>
void CopyDeviceSpanToVector(std::vector<T> *dst, xgboost::common::Span<T> src) {
CHECK_EQ(dst->size(), src.size());
dh::safe_cuda(cudaMemcpyAsync(dst->data(), src.data(), dst->size() * sizeof(T),
cudaMemcpyDeviceToHost));
}
/**
* \brief Copies const device span to std::vector.
*
* \tparam T Generic type parameter.
* \param [in,out] dst Copy destination.
* \param src Copy source. Must be device memory.
*/
template <typename T>
void CopyDeviceSpanToVector(std::vector<T> *dst, xgboost::common::Span<const T> src) {
CHECK_EQ(dst->size(), src.size());
dh::safe_cuda(cudaMemcpyAsync(dst->data(), src.data(), dst->size() * sizeof(T),
cudaMemcpyDeviceToHost));
}
template <class Src, class Dst>
void CopyTo(Src const &src, Dst *dst) {
if (src.empty()) {
dst->clear();
return;
}
dst->resize(src.size());
using SVT = std::remove_cv_t<typename Src::value_type>;
using DVT = std::remove_cv_t<typename Dst::value_type>;
static_assert(std::is_same<SVT, DVT>::value,
"Host and device containers must have same value type.");
dh::safe_cuda(cudaMemcpyAsync(thrust::raw_pointer_cast(dst->data()), src.data(),
src.size() * sizeof(SVT), cudaMemcpyDefault));
}
template <class HContainer, class DContainer>
void CopyToD(HContainer const &h, DContainer *d) {
CopyTo(h, d);
}
// Keep track of pinned memory allocation
struct PinnedMemory {
void *temp_storage{nullptr};
size_t temp_storage_bytes{0};
~PinnedMemory() { Free(); }
template <typename T>
xgboost::common::Span<T> GetSpan(size_t size) {
size_t num_bytes = size * sizeof(T);
if (num_bytes > temp_storage_bytes) {
Free();
safe_cuda(cudaMallocHost(&temp_storage, num_bytes));
temp_storage_bytes = num_bytes;
}
return xgboost::common::Span<T>(static_cast<T *>(temp_storage), size);
}
template <typename T>
xgboost::common::Span<T> GetSpan(size_t size, T init) {
auto result = this->GetSpan<T>(size);
for (auto &e : result) {
e = init;
}
return result;
}
void Free() {
if (temp_storage != nullptr) {
safe_cuda(cudaFreeHost(temp_storage));
}
}
};
/*
* Utility functions
*/
/**
* @brief Helper function to perform device-wide sum-reduction, returns to the
* host
* @param in the input array to be reduced
* @param nVals number of elements in the input array
*/
template <typename T>
typename std::iterator_traits<T>::value_type SumReduction(T in, int nVals) {
using ValueT = typename std::iterator_traits<T>::value_type;
size_t tmpSize {0};
ValueT *dummy_out = nullptr;
dh::safe_cuda(cub::DeviceReduce::Sum(nullptr, tmpSize, in, dummy_out, nVals));
TemporaryArray<char> temp(tmpSize + sizeof(ValueT));
auto ptr = reinterpret_cast<ValueT *>(temp.data().get()) + 1;
dh::safe_cuda(cub::DeviceReduce::Sum(
reinterpret_cast<void *>(ptr), tmpSize, in,
reinterpret_cast<ValueT *>(temp.data().get()),
nVals));
ValueT sum;
dh::safe_cuda(cudaMemcpy(&sum, temp.data().get(), sizeof(ValueT),
cudaMemcpyDeviceToHost));
return sum;
}
constexpr std::pair<int, int> CUDAVersion() {
#if defined(__CUDACC_VER_MAJOR__)
return std::make_pair(__CUDACC_VER_MAJOR__, __CUDACC_VER_MINOR__);
#else
// clang/clang-tidy
return std::make_pair((CUDA_VERSION) / 1000, (CUDA_VERSION) % 100 / 10);
#endif // defined(__CUDACC_VER_MAJOR__)
}
constexpr std::pair<int32_t, int32_t> ThrustVersion() {
return std::make_pair(THRUST_MAJOR_VERSION, THRUST_MINOR_VERSION);
}
// Whether do we have thrust 1.x with x >= minor
template <int32_t minor>
constexpr bool HasThrustMinorVer() {
return (ThrustVersion().first == 1 && ThrustVersion().second >= minor) ||
ThrustVersion().first > 1;
}
namespace detail {
template <typename T>
using TypedDiscardCTK114 = thrust::discard_iterator<T>;
template <typename T>
class TypedDiscard : public thrust::discard_iterator<T> {
public:
using value_type = T; // NOLINT
};
} // namespace detail
template <typename T>
using TypedDiscard = std::conditional_t<HasThrustMinorVer<12>(), detail::TypedDiscardCTK114<T>,
detail::TypedDiscard<T>>;
template <typename VectorT, typename T = typename VectorT::value_type,
typename IndexT = typename xgboost::common::Span<T>::index_type>
xgboost::common::Span<T> ToSpan(VectorT &vec, IndexT offset = 0,
IndexT size = std::numeric_limits<size_t>::max()) {
size = size == std::numeric_limits<size_t>::max() ? vec.size() : size;
CHECK_LE(offset + size, vec.size());
return {thrust::raw_pointer_cast(vec.data()) + offset, size};
}
template <typename T>
xgboost::common::Span<T> ToSpan(thrust::device_vector<T> &vec, size_t offset, size_t size) {
return ToSpan(vec, offset, size);
}
template <typename T>
xgboost::common::Span<T> ToSpan(DeviceUVector<T> &vec) {
return {vec.data(), vec.size()};
}
// thrust begin, similiar to std::begin
template <typename T>
thrust::device_ptr<T> tbegin(xgboost::HostDeviceVector<T>& vector) { // NOLINT
return thrust::device_ptr<T>(vector.DevicePointer());
}
template <typename T>
thrust::device_ptr<T> tend(xgboost::HostDeviceVector<T>& vector) { // // NOLINT
return tbegin(vector) + vector.Size();
}
template <typename T>
thrust::device_ptr<T const> tcbegin(xgboost::HostDeviceVector<T> const& vector) { // NOLINT
return thrust::device_ptr<T const>(vector.ConstDevicePointer());
}
template <typename T>
thrust::device_ptr<T const> tcend(xgboost::HostDeviceVector<T> const& vector) { // NOLINT
return tcbegin(vector) + vector.Size();
}
template <typename T>
XGBOOST_DEVICE thrust::device_ptr<T> tbegin(xgboost::common::Span<T>& span) { // NOLINT
return thrust::device_ptr<T>(span.data());
}
template <typename T>
XGBOOST_DEVICE thrust::device_ptr<T> tbegin(xgboost::common::Span<T> const& span) { // NOLINT
return thrust::device_ptr<T>(span.data());
}
template <typename T>
XGBOOST_DEVICE thrust::device_ptr<T> tend(xgboost::common::Span<T>& span) { // NOLINT
return tbegin(span) + span.size();
}
template <typename T>
XGBOOST_DEVICE thrust::device_ptr<T> tend(xgboost::common::Span<T> const& span) { // NOLINT
return tbegin(span) + span.size();
}
template <typename T>
XGBOOST_DEVICE auto trbegin(xgboost::common::Span<T> &span) { // NOLINT
return thrust::make_reverse_iterator(span.data() + span.size());
}
template <typename T>
XGBOOST_DEVICE auto trend(xgboost::common::Span<T> &span) { // NOLINT
return trbegin(span) + span.size();
}
template <typename T>
XGBOOST_DEVICE thrust::device_ptr<T const> tcbegin(xgboost::common::Span<T> const& span) { // NOLINT
return thrust::device_ptr<T const>(span.data());
}
template <typename T>
XGBOOST_DEVICE thrust::device_ptr<T const> tcend(xgboost::common::Span<T> const& span) { // NOLINT
return tcbegin(span) + span.size();
}
template <typename T>
XGBOOST_DEVICE auto tcrbegin(xgboost::common::Span<T> const &span) { // NOLINT
return thrust::make_reverse_iterator(span.data() + span.size());
}
template <typename T>
XGBOOST_DEVICE auto tcrend(xgboost::common::Span<T> const &span) { // NOLINT
return tcrbegin(span) + span.size();
}
// Atomic add function for gradients
template <typename OutputGradientT, typename InputGradientT>
XGBOOST_DEV_INLINE void AtomicAddGpair(OutputGradientT* dest,
const InputGradientT& gpair) {
auto dst_ptr = reinterpret_cast<typename OutputGradientT::ValueT*>(dest);
atomicAdd(dst_ptr,
static_cast<typename OutputGradientT::ValueT>(gpair.GetGrad()));
atomicAdd(dst_ptr + 1,
static_cast<typename OutputGradientT::ValueT>(gpair.GetHess()));
}
// Thrust version of this function causes error on Windows
template <typename ReturnT, typename IterT, typename FuncT>
XGBOOST_DEVICE thrust::transform_iterator<FuncT, IterT, ReturnT> MakeTransformIterator(
IterT iter, FuncT func) {
return thrust::transform_iterator<FuncT, IterT, ReturnT>(iter, func);
}
template <typename It>
size_t XGBOOST_DEVICE SegmentId(It first, It last, size_t idx) {
size_t segment_id = thrust::upper_bound(thrust::seq, first, last, idx) - 1 - first;
return segment_id;
}
template <typename T>
size_t XGBOOST_DEVICE SegmentId(xgboost::common::Span<T> segments_ptr, size_t idx) {
return SegmentId(segments_ptr.cbegin(), segments_ptr.cend(), idx);
}
namespace detail {
template <typename Key, typename KeyOutIt>
struct SegmentedUniqueReduceOp {
KeyOutIt key_out;
__device__ Key const& operator()(Key const& key) const {
auto constexpr kOne = static_cast<std::remove_reference_t<decltype(*(key_out + key.first))>>(1);
atomicAdd(&(*(key_out + key.first)), kOne);
return key;
}
};
} // namespace detail
/* \brief Segmented unique function. Keys are pointers to segments with key_segments_last -
* key_segments_first = n_segments + 1.
*
* \pre Input segment and output segment must not overlap.
*
* \param key_segments_first Beginning iterator of segments.
* \param key_segments_last End iterator of segments.
* \param val_first Beginning iterator of values.
* \param val_last End iterator of values.
* \param key_segments_out Output iterator of segments.
* \param val_out Output iterator of values.
*
* \return Number of unique values in total.
*/
template <typename DerivedPolicy, typename KeyInIt, typename KeyOutIt, typename ValInIt,
typename ValOutIt, typename CompValue, typename CompKey>
size_t
SegmentedUnique(const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
KeyInIt key_segments_first, KeyInIt key_segments_last, ValInIt val_first,
ValInIt val_last, KeyOutIt key_segments_out, ValOutIt val_out,
CompValue comp, CompKey comp_key=thrust::equal_to<size_t>{}) {
using Key = thrust::pair<size_t, typename thrust::iterator_traits<ValInIt>::value_type>;
auto unique_key_it = dh::MakeTransformIterator<Key>(
thrust::make_counting_iterator(static_cast<size_t>(0)),
[=] __device__(size_t i) {
size_t seg = dh::SegmentId(key_segments_first, key_segments_last, i);
return thrust::make_pair(seg, *(val_first + i));
});
size_t segments_len = key_segments_last - key_segments_first;
thrust::fill(thrust::device, key_segments_out, key_segments_out + segments_len, 0);
size_t n_inputs = std::distance(val_first, val_last);
// Reduce the number of uniques elements per segment, avoid creating an intermediate
// array for `reduce_by_key`. It's limited by the types that atomicAdd supports. For
// example, size_t is not supported as of CUDA 10.2.
auto reduce_it = thrust::make_transform_output_iterator(
thrust::make_discard_iterator(),
detail::SegmentedUniqueReduceOp<Key, KeyOutIt>{key_segments_out});
auto uniques_ret = thrust::unique_by_key_copy(
exec, unique_key_it, unique_key_it + n_inputs,
val_first, reduce_it, val_out,
[=] __device__(Key const &l, Key const &r) {
if (comp_key(l.first, r.first)) {
// In the same segment.
return comp(l.second, r.second);
}
return false;
});
auto n_uniques = uniques_ret.second - val_out;
CHECK_LE(n_uniques, n_inputs);
thrust::exclusive_scan(exec, key_segments_out,
key_segments_out + segments_len, key_segments_out, 0);
return n_uniques;
}
template <typename... Inputs,
std::enable_if_t<std::tuple_size<std::tuple<Inputs...>>::value == 7>
* = nullptr>
size_t SegmentedUnique(Inputs &&...inputs) {
dh::XGBCachingDeviceAllocator<char> alloc;
return SegmentedUnique(thrust::cuda::par(alloc),
std::forward<Inputs &&>(inputs)...,
thrust::equal_to<size_t>{});
}
/**
* \brief Unique by key for many groups of data. Has same constraint as `SegmentedUnique`.
*
* \tparam exec thrust execution policy
* \tparam key_segments_first start iter to segment pointer
* \tparam key_segments_last end iter to segment pointer
* \tparam key_first start iter to key for comparison
* \tparam key_last end iter to key for comparison
* \tparam val_first start iter to values
* \tparam key_segments_out output iterator for new segment pointer
* \tparam val_out output iterator for values
* \tparam comp binary comparison operator
*/
template <typename DerivedPolicy, typename SegInIt, typename SegOutIt,
typename KeyInIt, typename ValInIt, typename ValOutIt, typename Comp>
size_t SegmentedUniqueByKey(
const thrust::detail::execution_policy_base<DerivedPolicy> &exec,
SegInIt key_segments_first, SegInIt key_segments_last, KeyInIt key_first,
KeyInIt key_last, ValInIt val_first, SegOutIt key_segments_out,
ValOutIt val_out, Comp comp) {
using Key =
thrust::pair<size_t,
typename thrust::iterator_traits<KeyInIt>::value_type>;
auto unique_key_it = dh::MakeTransformIterator<Key>(
thrust::make_counting_iterator(static_cast<size_t>(0)),
[=] __device__(size_t i) {
size_t seg = dh::SegmentId(key_segments_first, key_segments_last, i);
return thrust::make_pair(seg, *(key_first + i));
});
size_t segments_len = key_segments_last - key_segments_first;
thrust::fill(thrust::device, key_segments_out,
key_segments_out + segments_len, 0);
size_t n_inputs = std::distance(key_first, key_last);
// Reduce the number of uniques elements per segment, avoid creating an
// intermediate array for `reduce_by_key`. It's limited by the types that
// atomicAdd supports. For example, size_t is not supported as of CUDA 10.2.
auto reduce_it = thrust::make_transform_output_iterator(
thrust::make_discard_iterator(),
detail::SegmentedUniqueReduceOp<Key, SegOutIt>{key_segments_out});
auto uniques_ret = thrust::unique_by_key_copy(
exec, unique_key_it, unique_key_it + n_inputs, val_first, reduce_it,
val_out, [=] __device__(Key const &l, Key const &r) {
if (l.first == r.first) {
// In the same segment.
return comp(thrust::get<1>(l), thrust::get<1>(r));
}
return false;
});
auto n_uniques = uniques_ret.second - val_out;
CHECK_LE(n_uniques, n_inputs);
thrust::exclusive_scan(exec, key_segments_out,
key_segments_out + segments_len, key_segments_out, 0);
return n_uniques;
}
template <typename Policy, typename InputIt, typename Init, typename Func>
auto Reduce(Policy policy, InputIt first, InputIt second, Init init, Func reduce_op) {
size_t constexpr kLimit = std::numeric_limits<int32_t>::max() / 2;
size_t size = std::distance(first, second);
using Ty = std::remove_cv_t<Init>;
Ty aggregate = init;
for (size_t offset = 0; offset < size; offset += kLimit) {
auto begin_it = first + offset;
auto end_it = first + std::min(offset + kLimit, size);
size_t batch_size = std::distance(begin_it, end_it);
CHECK_LE(batch_size, size);
auto ret = thrust::reduce(policy, begin_it, end_it, init, reduce_op);
aggregate = reduce_op(aggregate, ret);
}
return aggregate;
}
// wrapper to avoid integer `num_items`.
template <typename InputIteratorT, typename OutputIteratorT, typename ScanOpT,
typename OffsetT>
void InclusiveScan(InputIteratorT d_in, OutputIteratorT d_out, ScanOpT scan_op,
OffsetT num_items) {
size_t bytes = 0;
#if THRUST_MAJOR_VERSION >= 2
safe_cuda((
cub::DispatchScan<InputIteratorT, OutputIteratorT, ScanOpT, cub::NullType,
OffsetT>::Dispatch(nullptr, bytes, d_in, d_out, scan_op,
cub::NullType(), num_items, nullptr)));
#else
safe_cuda((
cub::DispatchScan<InputIteratorT, OutputIteratorT, ScanOpT, cub::NullType,
OffsetT>::Dispatch(nullptr, bytes, d_in, d_out, scan_op,
cub::NullType(), num_items, nullptr,
false)));
#endif
TemporaryArray<char> storage(bytes);
#if THRUST_MAJOR_VERSION >= 2
safe_cuda((
cub::DispatchScan<InputIteratorT, OutputIteratorT, ScanOpT, cub::NullType,
OffsetT>::Dispatch(storage.data().get(), bytes, d_in,
d_out, scan_op, cub::NullType(),
num_items, nullptr)));
#else
safe_cuda((
cub::DispatchScan<InputIteratorT, OutputIteratorT, ScanOpT, cub::NullType,
OffsetT>::Dispatch(storage.data().get(), bytes, d_in,
d_out, scan_op, cub::NullType(),
num_items, nullptr, false)));
#endif
}
template <typename InIt, typename OutIt, typename Predicate>
void CopyIf(InIt in_first, InIt in_second, OutIt out_first, Predicate pred) {
// We loop over batches because thrust::copy_if can't deal with sizes > 2^31
// See thrust issue #1302, XGBoost #6822
size_t constexpr kMaxCopySize = std::numeric_limits<int>::max() / 2;
size_t length = std::distance(in_first, in_second);
XGBCachingDeviceAllocator<char> alloc;
for (size_t offset = 0; offset < length; offset += kMaxCopySize) {
auto begin_input = in_first + offset;
auto end_input = in_first + std::min(offset + kMaxCopySize, length);
out_first = thrust::copy_if(thrust::cuda::par(alloc), begin_input,
end_input, out_first, pred);
}
}
template <typename InputIteratorT, typename OutputIteratorT, typename OffsetT>
void InclusiveSum(InputIteratorT d_in, OutputIteratorT d_out, OffsetT num_items) {
InclusiveScan(d_in, d_out, cub::Sum(), num_items);
}
class CUDAStreamView;
class CUDAEvent {
cudaEvent_t event_{nullptr};
public:
CUDAEvent() { dh::safe_cuda(cudaEventCreateWithFlags(&event_, cudaEventDisableTiming)); }
~CUDAEvent() {
if (event_) {
dh::safe_cuda(cudaEventDestroy(event_));
}
}
CUDAEvent(CUDAEvent const &that) = delete;
CUDAEvent &operator=(CUDAEvent const &that) = delete;
inline void Record(CUDAStreamView stream); // NOLINT
operator cudaEvent_t() const { return event_; } // NOLINT
};
class CUDAStreamView {
cudaStream_t stream_{nullptr};
public:
explicit CUDAStreamView(cudaStream_t s) : stream_{s} {}
void Wait(CUDAEvent const &e) {
#if defined(__CUDACC_VER_MAJOR__)
#if __CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ == 0
// CUDA == 11.0
dh::safe_cuda(cudaStreamWaitEvent(stream_, cudaEvent_t{e}, 0));
#else
// CUDA > 11.0
dh::safe_cuda(cudaStreamWaitEvent(stream_, cudaEvent_t{e}, cudaEventWaitDefault));
#endif // __CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ == 0:
#else // clang
dh::safe_cuda(cudaStreamWaitEvent(stream_, cudaEvent_t{e}, cudaEventWaitDefault));
#endif // defined(__CUDACC_VER_MAJOR__)
}
operator cudaStream_t() const { // NOLINT
return stream_;
}
cudaError_t Sync(bool error = true) {
if (error) {
dh::safe_cuda(cudaStreamSynchronize(stream_));
return cudaSuccess;
}
return cudaStreamSynchronize(stream_);
}
};
inline void CUDAEvent::Record(CUDAStreamView stream) { // NOLINT
dh::safe_cuda(cudaEventRecord(event_, cudaStream_t{stream}));
}
// Changing this has effect on prediction return, where we need to pass the pointer to
// third-party libraries like cuPy
inline CUDAStreamView DefaultStream() { return CUDAStreamView{cudaStreamPerThread}; }
class CUDAStream {
cudaStream_t stream_;
public:
CUDAStream() { dh::safe_cuda(cudaStreamCreateWithFlags(&stream_, cudaStreamNonBlocking)); }
~CUDAStream() { dh::safe_cuda(cudaStreamDestroy(stream_)); }
[[nodiscard]] CUDAStreamView View() const { return CUDAStreamView{stream_}; }
[[nodiscard]] cudaStream_t Handle() const { return stream_; }
void Sync() { this->View().Sync(); }
};
inline auto CachingThrustPolicy() {
XGBCachingDeviceAllocator<char> alloc;
#if THRUST_MAJOR_VERSION >= 2 || defined(XGBOOST_USE_RMM)
return thrust::cuda::par_nosync(alloc).on(DefaultStream());
#else
return thrust::cuda::par(alloc).on(DefaultStream());
#endif // THRUST_MAJOR_VERSION >= 2 || defined(XGBOOST_USE_RMM)
}
// Force nvcc to load data as constant
template <typename T>
class LDGIterator {
using DeviceWordT = typename cub::UnitWord<T>::DeviceWord;
static constexpr std::size_t kNumWords = sizeof(T) / sizeof(DeviceWordT);
const T *ptr_;
public:
XGBOOST_DEVICE explicit LDGIterator(const T *ptr) : ptr_(ptr) {}
__device__ T operator[](std::size_t idx) const {
DeviceWordT tmp[kNumWords];
static_assert(sizeof(tmp) == sizeof(T), "Expect sizes to be equal.");
#pragma unroll
for (int i = 0; i < kNumWords; i++) {
tmp[i] = __ldg(reinterpret_cast<const DeviceWordT *>(ptr_ + idx) + i);
}
return *reinterpret_cast<const T *>(tmp);
}
};
} // namespace dh