* In AUC and AUCPR metrics, detect whether weights are per-instance or per-group * Fix C++ style check * Add a test for weighted AUC
66 lines
2.7 KiB
Python
66 lines
2.7 KiB
Python
import numpy as np
|
|
from scipy.sparse import csr_matrix
|
|
import xgboost
|
|
|
|
def test_ranking_with_unweighted_data():
|
|
Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17])
|
|
Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3])
|
|
X = csr_matrix((np.ones(shape=8), (Xrow, Xcol)), shape=(20, 4))
|
|
y = np.array([0.0, 1.0, 1.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0, 1.0, 0.0,
|
|
0.0, 1.0, 0.0, 0.0, 1.0,
|
|
0.0, 1.0, 1.0, 0.0, 0.0])
|
|
|
|
group = np.array([5, 5, 5, 5], dtype=np.uint)
|
|
dtrain = xgboost.DMatrix(X, label=y)
|
|
dtrain.set_group(group)
|
|
|
|
params = {'eta': 1, 'tree_method': 'exact',
|
|
'objective': 'rank:pairwise', 'eval_metric': ['auc', 'aucpr'],
|
|
'max_depth': 1}
|
|
evals_result = {}
|
|
bst = xgboost.train(params, dtrain, 10, evals=[(dtrain, 'train')],
|
|
evals_result=evals_result)
|
|
auc_rec = evals_result['train']['auc']
|
|
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
|
|
auc_rec = evals_result['train']['aucpr']
|
|
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
|
|
|
|
def test_ranking_with_weighted_data():
|
|
Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17])
|
|
Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3])
|
|
X = csr_matrix((np.ones(shape=8), (Xrow, Xcol)), shape=(20, 4))
|
|
y = np.array([0.0, 1.0, 1.0, 0.0, 0.0,
|
|
0.0, 1.0, 0.0, 1.0, 0.0,
|
|
0.0, 1.0, 0.0, 0.0, 1.0,
|
|
0.0, 1.0, 1.0, 0.0, 0.0])
|
|
weights = np.array([1.0, 2.0, 3.0, 4.0])
|
|
|
|
group = np.array([5, 5, 5, 5], dtype=np.uint)
|
|
dtrain = xgboost.DMatrix(X, label=y, weight=weights)
|
|
dtrain.set_group(group)
|
|
|
|
params = {'eta': 1, 'tree_method': 'exact',
|
|
'objective': 'rank:pairwise', 'eval_metric': ['auc', 'aucpr'],
|
|
'max_depth': 1}
|
|
evals_result = {}
|
|
bst = xgboost.train(params, dtrain, 10, evals=[(dtrain, 'train')],
|
|
evals_result=evals_result)
|
|
auc_rec = evals_result['train']['auc']
|
|
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
|
|
auc_rec = evals_result['train']['aucpr']
|
|
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
|
|
|
|
for i in range(1, 11):
|
|
pred = bst.predict(dtrain, ntree_limit=i)
|
|
# is_sorted[i]: is i-th group correctly sorted by the ranking predictor?
|
|
is_sorted = []
|
|
for k in range(0, 20, 5):
|
|
ind = np.argsort(-pred[k:k+5])
|
|
z = y[ind+k]
|
|
is_sorted.append(all(i >= j for i, j in zip(z, z[1:])))
|
|
# Since we give weights 1, 2, 3, 4 to the four query groups,
|
|
# the ranking predictor will first try to correctly sort the last query group
|
|
# before correctly sorting other groups.
|
|
assert all(p <= q for p, q in zip(is_sorted, is_sorted[1:]))
|